获取列表元素的所有可能 (2^N) 种组合,任意长度

2024-11-18 08:41:00
admin
原创
12
摘要:问题描述:我有一个包含 15 个数字的列表。如何生成这些数字的所有 32,768 种组合(即,按原始顺序排列任意数量的元素)?我想到循环遍历十进制整数 1–32768,并使用每个数字的二进制表示作为过滤器来挑选出合适的列表元素。有没有更好的方法?对于特定长度的组合,请参阅获取所有 (n-choose-k) 长...

问题描述:

我有一个包含 15 个数字的列表。如何生成这些数字的所有 32,768 种组合(即,按原始顺序排列任意数量的元素)?

我想到循环遍历十进制整数 1–32768,并使用每个数字的二进制表示作为过滤器来挑选出合适的列表元素。有没有更好的方法?


对于特定长度的组合,请参阅获取所有 (n-choose-k) 长度为 n 的组合。请在适当的情况下使用该问题来关闭重复项。

当将有关组合的问题作为重复问题关闭时,务必确保 OP真正想要什么,而不是用来描述问题的词语。例如,想要笛卡尔积(请参阅如何获取多个列表的笛卡尔积)的人通常会询问“组合”。


解决方案 1:

这个答案忽略了一个方面:OP 要求所有组合...而不仅仅是长度“r”的组合。

因此,您要么必须循环遍历所有长度“L”:

import itertools

stuff = [1, 2, 3]
for L in range(len(stuff) + 1):
    for subset in itertools.combinations(stuff, L):
        print(subset)

或者 - 如果您想要变得时髦(或者让在您之后阅读代码的人产生误解) - 您可以生成“combinations()”生成器链,并对其进行迭代:

from itertools import chain, combinations
def all_subsets(ss):
    return chain(*map(lambda x: combinations(ss, x), range(0, len(ss)+1)))

for subset in all_subsets(stuff):
    print(subset)

解决方案 2:

看一下itertools.combinations:

itertools.combinations(iterable, r)

从输入可迭代对象中返回 r 长度的元素子序列。

组合按字典顺序发出。因此,如果输入的可迭代对象已排序,则组合元组将按排序顺序生成。

自 2.6 版起,包含电池!

解决方案 3:

在@Dan H 的高度赞同的答案下的评论中,提到了文档powerset()中的配方——包括Dan 自己的配方。但是,到目前为止,还没有人将其作为答案发布。由于它可能是解决问题的更好的方法之一(即使不是最好的方法),并且得到了另一位评论者的一点鼓励,因此如下所示。该函数生成所有可能长度的列表元素的所有唯一组合(包括包含零和所有元素的组合)。itertools

注意:如果目标是只获取唯一元素的组合(略有不同),则将行更改s = list(iterable)为以消除任何重复元素。无论如何,最终变成s = list(set(iterable))的事实意味着它将与生成器一起工作(与其他几个答案不同)。iterable`list`

from itertools import chain, combinations

def powerset(iterable):
    "powerset([1,2,3]) --> () (1,) (2,) (3,) (1,2) (1,3) (2,3) (1,2,3)"
    s = list(iterable)  # allows duplicate elements
    return chain.from_iterable(combinations(s, r) for r in range(len(s)+1))

stuff = [1, 2, 3]
for i, combo in enumerate(powerset(stuff), 1):
    print('combo #{}: {}'.format(i, combo))

输出:

combo #1: ()
combo #2: (1,)
combo #3: (2,)
combo #4: (3,)
combo #5: (1, 2)
combo #6: (1, 3)
combo #7: (2, 3)
combo #8: (1, 2, 3)

解决方案 4:

这种方法可以轻松转移到所有支持递归的编程语言(无 itertools、无 Yield、无列表理解)

def combs(a):
    if len(a) == 0:
        return [[]]
    cs = []
    for c in combs(a[1:]):
        cs += [c, c+[a[0]]]
    return cs

>>> combs([1,2,3,4,5])
[[], [1], [2], [2, 1], [3], [3, 1], [3, 2], ..., [5, 4, 3, 2, 1]]

解决方案 5:

这是一个懒惰的单行代码,也使用 itertools:

from itertools import compress, product

def combinations(items):
    return ( set(compress(items,mask)) for mask in product(*[[0,1]]*len(items)) )
    # alternative:                      ...in product([0,1], repeat=len(items)) )

这个答案背后的主要思想:有 2^N 种组合——与长度为 N 的二进制字符串的数量相同。对于每个二进制字符串,选择与“1”相对应的所有元素。

items=abc * mask=###
 |
 V
000 -> 
001 ->   c
010 ->  b
011 ->  bc
100 -> a
101 -> a c
110 -> ab
111 -> abc

需要考虑的事项:

  • 这要求您可以调用len(...)items解决方法:如果items是像生成器这样的可迭代对象,则先将其转换为列表items=list(_itemsArg)

  • 这要求迭代的顺序items不是随机的(解决方法:不要疯狂)

  • 这要求项目是唯一的,否则{2,2,1}{2,1,1}都会折叠为{2,1}(解决方法:用作collections.Counter替代品;它基本上是一个多集……但如果您需要它可散列,则set可能需要稍后使用)tuple(sorted(Counter(...).elements()))


演示

>>> list(combinations(range(4)))
[set(), {3}, {2}, {2, 3}, {1}, {1, 3}, {1, 2}, {1, 2, 3}, {0}, {0, 3}, {0, 2}, {0, 2, 3}, {0, 1}, {0, 1, 3}, {0, 1, 2}, {0, 1, 2, 3}]

>>> list(combinations('abcd'))
[set(), {'d'}, {'c'}, {'c', 'd'}, {'b'}, {'b', 'd'}, {'c', 'b'}, {'c', 'b', 'd'}, {'a'}, {'a', 'd'}, {'a', 'c'}, {'a', 'c', 'd'}, {'a', 'b'}, {'a', 'b', 'd'}, {'a', 'c', 'b'}, {'a', 'c', 'b', 'd'}]

解决方案 6:

下面是使用递归的一个:

>>> import copy
>>> def combinations(target,data):
...     for i in range(len(data)):
...         new_target = copy.copy(target)
...         new_data = copy.copy(data)
...         new_target.append(data[i])
...         new_data = data[i+1:]
...         print new_target
...         combinations(new_target,
...                      new_data)
...                      
... 
>>> target = []
>>> data = ['a','b','c','d']
>>> 
>>> combinations(target,data)
['a']
['a', 'b']
['a', 'b', 'c']
['a', 'b', 'c', 'd']
['a', 'b', 'd']
['a', 'c']
['a', 'c', 'd']
['a', 'd']
['b']
['b', 'c']
['b', 'c', 'd']
['b', 'd']
['c']
['c', 'd']
['d']

解决方案 7:

此单行代码为您提供了所有组合(如果原始列表/集合包含不同的元素,则为0和项目之间的组合)并使用本机方法:n`n`itertools.combinations

Python 2

from itertools import combinations

input = ['a', 'b', 'c', 'd']

output = sum([map(list, combinations(input, i)) for i in range(len(input) + 1)], [])

Python 3

from itertools import combinations

input = ['a', 'b', 'c', 'd']

output = sum([list(map(list, combinations(input, i))) for i in range(len(input) + 1)], [])

输出将是:

[[],
 ['a'],
 ['b'],
 ['c'],
 ['d'],
 ['a', 'b'],
 ['a', 'c'],
 ['a', 'd'],
 ['b', 'c'],
 ['b', 'd'],
 ['c', 'd'],
 ['a', 'b', 'c'],
 ['a', 'b', 'd'],
 ['a', 'c', 'd'],
 ['b', 'c', 'd'],
 ['a', 'b', 'c', 'd']]

在线尝试:

http://ideone.com/COghfX

解决方案 8:

您可以使用以下简单的代码在 Python 中生成列表的所有组合:

import itertools

a = [1,2,3,4]
for i in xrange(0,len(a)+1):
   print list(itertools.combinations(a,i))

结果是:

[()]
[(1,), (2,), (3,), (4,)]
[(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)]
[(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)]
[(1, 2, 3, 4)]

解决方案 9:

我想我会为那些寻求答案而无需导入 itertools 或任何其他额外库的人添加此功能。

def powerSet(items):
    """
    Power set generator: get all possible combinations of a list’s elements

    Input:
        items is a list
    Output:
        returns 2**n combination lists one at a time using a generator 

    Reference: edx.org 6.00.2x Lecture 2 - Decision Trees and dynamic programming
    """

    N = len(items)
    # enumerate the 2**N possible combinations
    for i in range(2**N):
        combo = []
        for j in range(N):
            # test bit jth of integer i
            if (i >> j) % 2 == 1:
                combo.append(items[j])
        yield combo

简单收益生成器用法:

for i in powerSet([1,2,3,4]):
    print (i, ", ",  end="")

上述使用示例的输出:

[] 、 [1] 、 [2] 、 [1, 2] 、 [3] 、 [1, 3] 、 [2, 3] 、 [1, 2, 3] 、 [4] 、 [1, 4] , [2, 4] , [1, 2, 4] , [3, 4] , [1, 3, 4] , [2, 3, 4] , [1, 2, 3, 4] ,

解决方案 10:

我同意 Dan H 的观点,Ben 确实要求提供所有组合。itertools.combinations()但并没有提供所有组合。

另一个问题是,如果输入的可迭代对象很大,那么返回一个生成器而不是列表中的所有内容可能更好:

iterable = range(10)
for s in xrange(len(iterable)+1):
  for comb in itertools.combinations(iterable, s):
    yield comb

解决方案 11:

3个功能:

  1. n 个元素的所有组合列表

  2. n 个元素的所有组合列表,其中顺序没有区别

  3. 所有排列

import sys

def permutations(a):
    return combinations(a, len(a))

def combinations(a, n):
    if n == 1:
        for x in a:
            yield [x]
    else:
        for i in range(len(a)):
            for x in combinations(a[:i] + a[i+1:], n-1):
                yield [a[i]] + x

def combinationsNoOrder(a, n):
    if n == 1:
        for x in a:
            yield [x]
    else:
        for i in range(len(a)):
            for x in combinationsNoOrder(a[:i], n-1):
                yield [a[i]] + x
    
if __name__ == "__main__":
    for s in combinations(list(map(int, sys.argv[2:])), int(sys.argv[1])):
        print(s)

解决方案 12:

from itertools import combinations


features = ['A', 'B', 'C']
tmp = []
for i in range(len(features)):
    oc = combinations(features, i + 1)
    for c in oc:
        tmp.append(list(c))

输出

[
 ['A'],
 ['B'],
 ['C'],
 ['A', 'B'],
 ['A', 'C'],
 ['B', 'C'],
 ['A', 'B', 'C']
]

解决方案 13:

我喜欢这个问题,因为有很多方法可以实现它。我决定为将来创建一个参考答案。

在生产中使用什么?

intertools 的文档有一个独立的示例,为什么不在你的代码中使用它呢?有些人建议使用,但它的实现more_itertools.powerset完全相同!如果我是你,我不会为了一件小事安装整个包。这可能是最好的方法:

import itertools

def powerset(iterable):
    "powerset([1,2,3]) --> () (1,) (2,) (3,) (1,2) (1,3) (2,3) (1,2,3)"
    s = list(iterable)
    return itertools.chain.from_iterable(combinations(s, r) for r in range(len(s)+1))

其他可能的方法

方法 0:使用组合

import itertools

def subsets(nums):
    result = []
    for i in range(len(nums) + 1):
        result += itertools.combinations(nums, i)
    return result

方法 1:直接递归

def subsets(nums):
    result = []

    def powerset(alist, index, curr):
        if index == len(alist):
            result.append(curr)
            return

        powerset(alist, index + 1, curr + [alist[index]])
        powerset(alist, index + 1, curr)

    powerset(nums, 0, [])
    return result

方法 2:回溯

def subsets(nums):
    result = []

    def backtrack(index, curr, k):
        if len(curr) == k:
            result.append(list(curr))
            return
        for i in range(index, len(nums)):
            curr.append(nums[i])
            backtrack(i + 1, curr, k)
            curr.pop()

    for k in range(len(nums) + 1):
        backtrack(0, [], k)
    return result

或者

def subsets(nums):
    result = []

    def dfs(nums, index, path, result):
        result.append(path)
        for i in range(index, len(nums)):
            dfs(nums, i + 1, path + [nums[i]], result)

    dfs(nums, 0, [], result)
    return result

方法 3:位掩码

def subsets(nums):
    res = []
    n = len(nums)
    for i in range(1 << n):
        aset = []
        for j in range(n):
            value = (1 << j) & i  # value = (i >> j) & 1
            if value:
                aset.append(nums[j])
        res.append(aset)
    return res

或(不是真正的位掩码,而是直觉地认为恰好有 2^n 个子集)

def subsets(nums):
    subsets = []
    expected_subsets = 2 ** len(nums)

    def generate_subset(subset, nums):
        if len(subsets) >= expected_subsets:
            return
        if len(subsets) < expected_subsets:
            subsets.append(subset)
        for i in range(len(nums)):
            generate_subset(subset + [nums[i]], nums[i + 1:])

    generate_subset([], nums)
    return subsets

方法 4:级联

def subsets(nums):
    result = [[]]
    for i in range(len(nums)):
        for j in range(len(result)):
            subset = list(result[j])
            subset.append(nums[i])
            result.append(subset)
    return result

解决方案 14:

这里还有另一个解决方案(单行),涉及使用itertools.combinations函数,但这里我们使用双列表理解(而不是 for 循环或 sum):

def combs(x):
    return [c for i in range(len(x)+1) for c in combinations(x,i)]

演示:

>>> combs([1,2,3,4])
[(), 
 (1,), (2,), (3,), (4,), 
 (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4), 
 (1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4), 
 (1, 2, 3, 4)]

解决方案 15:

您还可以使用优秀包中的powersetmore_itertools函数。

from more_itertools import powerset

l = [1,2,3]
list(powerset(l))

# [(), (1,), (2,), (3,), (1, 2), (1, 3), (2, 3), (1, 2, 3)]

我们还可以验证它是否满足 OP 的要求

from more_itertools import ilen

assert ilen(powerset(range(15))) == 32_768

解决方案 16:

下面是一个“标准递归答案”,类似于另一个类似的答案https://stackoverflow.com/a/23743696/711085。(我们实际上不必担心堆栈空间不足,因为我们无法处理所有N!排列。)

它依次访问每个元素,然后取用或放弃它(我们可以直接从该算法中看到 2^N 基数)。

def combs(xs, i=0):
    if i==len(xs):
        yield ()
        return
    for c in combs(xs,i+1):
        yield c
        yield c+(xs[i],)

演示:

>>> list( combs(range(5)) )
[(), (0,), (1,), (1, 0), (2,), (2, 0), (2, 1), (2, 1, 0), (3,), (3, 0), (3, 1), (3, 1, 0), (3, 2), (3, 2, 0), (3, 2, 1), (3, 2, 1, 0), (4,), (4, 0), (4, 1), (4, 1, 0), (4, 2), (4, 2, 0), (4, 2, 1), (4, 2, 1, 0), (4, 3), (4, 3, 0), (4, 3, 1), (4, 3, 1, 0), (4, 3, 2), (4, 3, 2, 0), (4, 3, 2, 1), (4, 3, 2, 1, 0)]

>>> list(sorted( combs(range(5)), key=len))
[(), 
 (0,), (1,), (2,), (3,), (4,), 
 (1, 0), (2, 0), (2, 1), (3, 0), (3, 1), (3, 2), (4, 0), (4, 1), (4, 2), (4, 3), 
 (2, 1, 0), (3, 1, 0), (3, 2, 0), (3, 2, 1), (4, 1, 0), (4, 2, 0), (4, 2, 1), (4, 3, 0), (4, 3, 1), (4, 3, 2), 
 (3, 2, 1, 0), (4, 2, 1, 0), (4, 3, 1, 0), (4, 3, 2, 0), (4, 3, 2, 1), 
 (4, 3, 2, 1, 0)]

>>> len(set(combs(range(5))))
32

解决方案 17:

我知道使用 itertools 来获取所有组合更为实用,但如果你愿意的话,你可以只使用列表理解来实现这一点,当然如果你想要编写大量代码

对于两对的组合:

lambda l: [(a, b) for i, a in enumerate(l) for b in l[i+1:]]

对于三对的组合来说,就这么简单:

lambda l: [(a, b, c) for i, a in enumerate(l) for ii, b in enumerate(l[i+1:]) for c in l[i+ii+2:]]

结果与使用 itertools.combinations 相同:

import itertools
combs_3 = lambda l: [
    (a, b, c) for i, a in enumerate(l) 
    for ii, b in enumerate(l[i+1:]) 
    for c in l[i+ii+2:]
]
data = ((1, 2), 5, "a", None)
print("A:", list(itertools.combinations(data, 3)))
print("B:", combs_3(data))
# A: [((1, 2), 5, 'a'), ((1, 2), 5, None), ((1, 2), 'a', None), (5, 'a', None)]
# B: [((1, 2), 5, 'a'), ((1, 2), 5, None), ((1, 2), 'a', None), (5, 'a', None)]

解决方案 18:

这个怎么样..使用字符串而不是列表,但同样的事情..字符串可以在 Python 中像列表一样处理:

def comb(s, res):
    if not s: return
    res.add(s)
    for i in range(0, len(s)):
        t = s[0:i] + s[i + 1:]
        comb(t, res)

res = set()
comb('game', res) 

print(res)

解决方案 19:

在 Python 3 中你可以做这样 itertools的事情:

def combinations(arr, carry):
    for i in range(len(arr)):
        yield carry + arr[i]
        yield from combinations(arr[i + 1:], carry + arr[i])

最初carry = "".

解决方案 20:

我对这个话题有点晚了,但我认为我可以帮助一些人。

您可以product使用itertools

from itertools import product

n = [1, 2, 3]

result = product(n, repeat=3) # You can change the repeat more then n length

print(list(result))

输出:

[(1, 1, 1), (1, 1, 2), (1, 1, 3), (1, 2, 1), (1, 2, 2), (1, 2, 3), (1, 3, 1),
 (1, 3, 2), (1, 3, 3), (2, 1, 1), (2, 1, 2), (2, 1, 3), (2, 2, 1), (2, 2, 2),
 (2, 2, 3), (2, 3, 1), (2, 3, 2), (2, 3, 3), (3, 1, 1), (3, 1, 2), (3, 1, 3), 
(3, 2, 1), (3, 2, 2), (3, 2, 3), (3, 3, 1), (3, 3, 2), (3, 3, 3)]

另一个例子,但是改变重复参数:

from itertools import product

n = [1, 2, 3]

result = product(n, repeat=4) # Changing repeat to 4
print(list(result))

输出:

[(1, 1, 1, 1), (1, 1, 1, 2), (1, 1, 1, 3), (1, 1, 2, 1), (1, 1, 2, 2), 
(1, 1, 2, 3), (1, 1, 3, 1), (1, 1, 3, 2), (1, 1, 3, 3), (1, 2, 1, 1), 
(1, 2, 1, 2), (1, 2, 1, 3), (1, 2, 2, 1), (1, 2, 2, 2), (1, 2, 2, 3), 
(1, 2, 3, 1), (1, 2, 3, 2), (1, 2, 3, 3), (1, 3, 1, 1), (1, 3, 1, 2), 
(1, 3, 1, 3), (1, 3, 2, 1), (1, 3, 2, 2), (1, 3, 2, 3), (1, 3, 3, 1), 
(1, 3, 3, 2), (1, 3, 3, 3), (2, 1, 1, 1), (2, 1, 1, 2), (2, 1, 1, 3), 
(2, 1, 2, 1), (2, 1, 2, 2), (2, 1, 2, 3), (2, 1, 3, 1), (2, 1, 3, 2),
 (2, 1, 3, 3), (2, 2, 1, 1), (2, 2, 1, 2), (2, 2, 1, 3), (2, 2, 2, 1), 
(2, 2, 2, 2), (2, 2, 2, 3), (2, 2, 3, 1), (2, 2, 3, 2), (2, 2, 3, 3), 
(2, 3, 1, 1), (2, 3, 1, 2), (2, 3, 1, 3), (2, 3, 2, 1), (2, 3, 2, 2), 
(2, 3, 2, 3), (2, 3, 3, 1), (2, 3, 3, 2), (2, 3, 3, 3), (3, 1, 1, 1), 
(3, 1, 1, 2), (3, 1, 1, 3), (3, 1, 2, 1), (3, 1, 2, 2), (3, 1, 2, 3), 
(3, 1, 3, 1), (3, 1, 3, 2), (3, 1, 3, 3), (3, 2, 1, 1), (3, 2, 1, 2), 
(3, 2, 1, 3), (3, 2, 2, 1), (3, 2, 2, 2), (3, 2, 2, 3), (3, 2, 3, 1), 
(3, 2, 3, 2), (3, 2, 3, 3), (3, 3, 1, 1), (3, 3, 1, 2), (3, 3, 1, 3), 
(3, 3, 2, 1), (3, 3, 2, 2), (3, 3, 2, 3), (3, 3, 3, 1), (3, 3, 3, 2), 
(3, 3, 3, 3)]

解决方案 21:

以下是两种实现itertools.combinations

返回列表

def combinations(lst, depth, start=0, items=[]):
    if depth <= 0:
        return [items]
    out = []
    for i in range(start, len(lst)):
        out += combinations(lst, depth - 1, i + 1, items + [lst[i]])
    return out

一个返回一个生成器

def combinations(lst, depth, start=0, prepend=[]):
    if depth <= 0:
        yield prepend
    else:
        for i in range(start, len(lst)):
            for c in combinations(lst, depth - 1, i + 1, prepend + [lst[i]]):
                yield c

请注意,建议为这些函数提供一个辅助函数,因为 prepend 参数是静态的,并且不会随着每次调用而改变

print([c for c in combinations([1, 2, 3, 4], 3)])
# [[1, 2, 3], [1, 2, 4], [1, 3, 4], [2, 3, 4]]

# get a hold of prepend
prepend = [c for c in combinations([], -1)][0]
prepend.append(None)

print([c for c in combinations([1, 2, 3, 4], 3)])
# [[None, 1, 2, 3], [None, 1, 2, 4], [None, 1, 3, 4], [None, 2, 3, 4]]

这是一个非常肤浅的案例,但谨慎行事总比后悔好

解决方案 22:

来自 itertools 的组合

import itertools
col_names = ["aa","bb", "cc", "dd"]
all_combinations = itertools.chain(*[itertools.combinations(col_names,i+1) for i,_ in enumerate(col_names)])
print(list(all_combinations))

解决方案 23:

该代码采用了带有嵌套列表的简单算法......

# FUNCTION getCombos: To generate all combos of an input list, consider the following sets of nested lists...
#
#           [ [ [] ] ]
#           [ [ [] ], [ [A] ] ]
#           [ [ [] ], [ [A],[B] ],         [ [A,B] ] ]
#           [ [ [] ], [ [A],[B],[C] ],     [ [A,B],[A,C],[B,C] ],                   [ [A,B,C] ] ]
#           [ [ [] ], [ [A],[B],[C],[D] ], [ [A,B],[A,C],[B,C],[A,D],[B,D],[C,D] ], [ [A,B,C],[A,B,D],[A,C,D],[B,C,D] ], [ [A,B,C,D] ] ]
#
#  There is a set of lists for each number of items that will occur in a combo (including an empty set).
#  For each additional item, begin at the back of the list by adding an empty list, then taking the set of
#  lists in the previous column (e.g., in the last list, for sets of 3 items you take the existing set of
#  3-item lists and append to it additional lists created by appending the item (4) to the lists in the
#  next smallest item count set. In this case, for the three sets of 2-items in the previous list. Repeat
#  for each set of lists back to the initial list containing just the empty list.
#

def getCombos(listIn = ['A','B','C','D','E','F'] ):
    listCombos = [ [ [] ] ]     # list of lists of combos, seeded with a list containing only the empty list
    listSimple = []             # list to contain the final returned list of items (e.g., characters)

    for item in listIn:
        listCombos.append([])   # append an emtpy list to the end for each new item added
        for index in xrange(len(listCombos)-1, 0, -1):  # set the index range to work through the list
            for listPrev in listCombos[index-1]:        # retrieve the lists from the previous column
                listCur = listPrev[:]                   # create a new temporary list object to update
                listCur.append(item)                    # add the item to the previous list to make it current
                listCombos[index].append(listCur)       # list length and append it to the current list

                itemCombo = ''                          # Create a str to concatenate list items into a str
                for item in listCur:                    # concatenate the members of the lists to create
                    itemCombo += item                   # create a string of items
                listSimple.append(itemCombo)            # add to the final output list

    return [listSimple, listCombos]
# END getCombos()

解决方案 24:

不使用 itertools:

def combine(inp):
    return combine_helper(inp, [], [])


def combine_helper(inp, temp, ans):
    for i in range(len(inp)):
        current = inp[i]
        remaining = inp[i + 1:]
        temp.append(current)
        ans.append(tuple(temp))
        combine_helper(remaining, temp, ans)
        temp.pop()
    return ans


print(combine(['a', 'b', 'c', 'd']))

解决方案 25:

这是我的实现

def get_combinations(list_of_things):
"""gets every combination of things in a list returned as a list of lists

Should be read : add all combinations of a certain size to the end of a list for every possible size in the
the list_of_things.

"""
list_of_combinations = [list(combinations_of_a_certain_size)
                        for possible_size_of_combinations in range(1,  len(list_of_things))
                        for combinations_of_a_certain_size in itertools.combinations(list_of_things,
                                                                                     possible_size_of_combinations)]
return list_of_combinations

解决方案 26:

如文档所述

def combinations(iterable, r):
    # combinations('ABCD', 2) --> AB AC AD BC BD CD
    # combinations(range(4), 3) --> 012 013 023 123
    pool = tuple(iterable)
    n = len(pool)
    if r > n:
        return
    indices = list(range(r))
    yield tuple(pool[i] for i in indices)
    while True:
        for i in reversed(range(r)):
            if indices[i] != i + n - r:
                break
        else:
            return
        indices[i] += 1
        for j in range(i+1, r):
            indices[j] = indices[j-1] + 1
        yield tuple(pool[i] for i in indices)


x = [2, 3, 4, 5, 1, 6, 4, 7, 8, 3, 9]
for i in combinations(x, 2):
    print i

解决方案 27:

我认为下面的方法特别优雅,但很惊讶在答案中没有看到它。它使用列表理解,但没有yield,没有递归,没有嵌套循环,也没有导入。

def get_combinations(input_list):
    combinations = [[]]
    for n in input_list:
        combinations += [combination + [n] for combination in combinations]
    return combinations

get_combinations([1, 2, 3])

输出:

[[], [1], [2], [1, 2], [3], [1, 3], [2, 3], [1, 2, 3]]

解决方案 28:

如果有人像我一样正在寻找反向列表:

stuff = [1, 2, 3, 4]

def reverse(bla, y):
    for subset in itertools.combinations(bla, len(bla)-y):
        print list(subset)
    if y != len(bla):
        y += 1
        reverse(bla, y)

reverse(stuff, 1)

解决方案 29:

flag = 0
requiredCals =12
from itertools import chain, combinations

def powerset(iterable):
    s = list(iterable)  # allows duplicate elements
    return chain.from_iterable(combinations(s, r) for r in range(len(s)+1))

stuff = [2,9,5,1,6]
for i, combo in enumerate(powerset(stuff), 1):
    if(len(combo)>0):
        #print(combo , sum(combo))
        if(sum(combo)== requiredCals):
            flag = 1
            break
if(flag==1):
    print('True')
else:
    print('else')

解决方案 30:

我迟到了,但我想分享我在同一个问题上找到的解决方案:具体来说,我正在寻找顺序组合,因此对于“STAR”,我想要“STAR”、“TA”、“AR”,但不是“SR”。

lst = [S, T, A, R]
lstCombos = []
for Length in range(0,len(lst)+1):
    for i in lst:
        lstCombos.append(lst[lst.index(i):lst.index(i)+Length])

可以在最后一行之前添加额外的 if 来过滤重复项:

lst = [S, T, A, R]
lstCombos = []
for Length in range(0,len(lst)+1):
    for i in lst:
         if not lst[lst.index(i):lst.index(i)+Length]) in lstCombos:
             lstCombos.append(lst[lst.index(i):lst.index(i)+Length])

如果由于某种原因,这在输出中返回空白列表,这发生在我身上,我添加:

for subList in lstCombos:
    if subList = '':
         lstCombos.remove(subList)
相关推荐
  为什么项目管理通常仍然耗时且低效?您是否还在反复更新电子表格、淹没在便利贴中并参加每周更新会议?这确实是耗费时间和精力。借助软件工具的帮助,您可以一目了然地全面了解您的项目。如今,国内外有足够多优秀的项目管理软件可以帮助您掌控每个项目。什么是项目管理软件?项目管理软件是广泛行业用于项目规划、资源分配和调度的软件。它使项...
项目管理软件   601  
  华为IPD与传统研发模式的8大差异在快速变化的商业环境中,产品研发模式的选择直接决定了企业的市场响应速度和竞争力。华为作为全球领先的通信技术解决方案供应商,其成功在很大程度上得益于对产品研发模式的持续创新。华为引入并深度定制的集成产品开发(IPD)体系,相较于传统的研发模式,展现出了显著的差异和优势。本文将详细探讨华为...
IPD流程是谁发明的   7  
  如何通过IPD流程缩短产品上市时间?在快速变化的市场环境中,产品上市时间成为企业竞争力的关键因素之一。集成产品开发(IPD, Integrated Product Development)作为一种先进的产品研发管理方法,通过其结构化的流程设计和跨部门协作机制,显著缩短了产品上市时间,提高了市场响应速度。本文将深入探讨如...
华为IPD流程   9  
  在项目管理领域,IPD(Integrated Product Development,集成产品开发)流程图是连接创意、设计与市场成功的桥梁。它不仅是一个视觉工具,更是一种战略思维方式的体现,帮助团队高效协同,确保产品按时、按质、按量推向市场。尽管IPD流程图可能初看之下显得错综复杂,但只需掌握几个关键点,你便能轻松驾驭...
IPD开发流程管理   8  
  在项目管理领域,集成产品开发(IPD)流程被视为提升产品上市速度、增强团队协作与创新能力的重要工具。然而,尽管IPD流程拥有诸多优势,其实施过程中仍可能遭遇多种挑战,导致项目失败。本文旨在深入探讨八个常见的IPD流程失败原因,并提出相应的解决方法,以帮助项目管理者规避风险,确保项目成功。缺乏明确的项目目标与战略对齐IP...
IPD流程图   8  
热门文章
项目管理软件有哪些?
云禅道AD
禅道项目管理软件

云端的项目管理软件

尊享禅道项目软件收费版功能

无需维护,随时随地协同办公

内置subversion和git源码管理

每天备份,随时转为私有部署

免费试用