在 numpy 数组中查找最近的值
- 2024-12-13 08:37:00
- admin 原创
- 85
问题描述:
如何在 numpy 数组中找到最接近的值?示例:
np.find_nearest(array, value)
解决方案 1:
import numpy as np
def find_nearest(array, value):
array = np.asarray(array)
idx = (np.abs(array - value)).argmin()
return array[idx]
使用示例:
array = np.random.random(10)
print(array)
# [ 0.21069679 0.61290182 0.63425412 0.84635244 0.91599191 0.00213826
# 0.17104965 0.56874386 0.57319379 0.28719469]
print(find_nearest(array, value=0.5))
# 0.568743859261
解决方案 2:
如果您的数组已排序并且非常大,这是一个更快的解决方案:
def find_nearest(array,value):
idx = np.searchsorted(array, value, side="left")
if idx > 0 and (idx == len(array) or math.fabs(value - array[idx-1]) < math.fabs(value - array[idx])):
return array[idx-1]
else:
return array[idx]
这可以扩展到非常大的数组。如果您不能假设数组已经排序,您可以轻松修改上面的方法以进行排序。对于小数组来说,这有点过头了,但是一旦数组变大,这种方法就会快得多。
解决方案 3:
稍加修改,上述答案就适用于任意维数的数组(1d、2d、3d、...):
def find_nearest(a, a0):
"Element in nd array `a` closest to the scalar value `a0`"
idx = np.abs(a - a0).argmin()
return a.flat[idx]
或者,写成一行:
a.flat[np.abs(a - a0).argmin()]
解决方案 4:
答案摘要:如果有一个已排序的数组array
,那么二分法代码(如下所示)执行速度最快。对于大型数组,速度快约 100-1000 倍,对于小型数组,速度快约 2-100 倍。它也不需要 numpy。如果您有一个未排序的数组,array
那么如果array
很大,应该首先考虑使用 O(n logn) 排序,然后二分法,如果array
很小,那么方法 2 似乎是最快的。
首先,您应该澄清您所说的最近值是什么意思。通常,人们希望在横坐标中使用间隔,例如 array=[0,0.7,2.1],value=1.95,答案将是 idx=1。我怀疑您需要这种情况(否则,一旦找到间隔,就可以使用后续条件语句非常轻松地修改以下内容)。我会注意到,执行此操作的最佳方法是使用二分法(我将首先提供 - 请注意,它根本不需要 numpy,并且比使用 numpy 函数更快,因为它们执行冗余操作)。然后,我将提供与其他用户在此处提供的其他方法的时间比较。
二分法:
def bisection(array,value):
'''Given an ``array`` , and given a ``value`` , returns an index j such that ``value`` is between array[j]
and array[j+1]. ``array`` must be monotonic increasing. j=-1 or j=len(array) is returned
to indicate that ``value`` is out of range below and above respectively.'''
n = len(array)
if (value < array[0]):
return -1
elif (value > array[n-1]):
return n
jl = 0# Initialize lower
ju = n-1# and upper limits.
while (ju-jl > 1):# If we are not yet done,
jm=(ju+jl) >> 1# compute a midpoint with a bitshift
if (value >= array[jm]):
jl=jm# and replace either the lower limit
else:
ju=jm# or the upper limit, as appropriate.
# Repeat until the test condition is satisfied.
if (value == array[0]):# edge cases at bottom
return 0
elif (value == array[n-1]):# and top
return n-1
else:
return jl
现在我将从其他答案中定义代码,它们每个都返回一个索引:
import math
import numpy as np
def find_nearest1(array,value):
idx,val = min(enumerate(array), key=lambda x: abs(x[1]-value))
return idx
def find_nearest2(array, values):
indices = np.abs(np.subtract.outer(array, values)).argmin(0)
return indices
def find_nearest3(array, values):
values = np.atleast_1d(values)
indices = np.abs(np.int64(np.subtract.outer(array, values))).argmin(0)
out = array[indices]
return indices
def find_nearest4(array,value):
idx = (np.abs(array-value)).argmin()
return idx
def find_nearest5(array, value):
idx_sorted = np.argsort(array)
sorted_array = np.array(array[idx_sorted])
idx = np.searchsorted(sorted_array, value, side="left")
if idx >= len(array):
idx_nearest = idx_sorted[len(array)-1]
elif idx == 0:
idx_nearest = idx_sorted[0]
else:
if abs(value - sorted_array[idx-1]) < abs(value - sorted_array[idx]):
idx_nearest = idx_sorted[idx-1]
else:
idx_nearest = idx_sorted[idx]
return idx_nearest
def find_nearest6(array,value):
xi = np.argmin(np.abs(np.ceil(array[None].T - value)),axis=0)
return xi
现在我将对代码进行计时:
请注意,方法 1、2、4、5 不能正确给出间隔。方法 1、2、4 四舍五入到数组中的最近点(例如 >=1.5 -> 2),方法 5 总是向上舍入(例如 1.45 -> 2)。只有方法 3 和 6,当然还有二分法才能正确给出间隔。
array = np.arange(100000)
val = array[50000]+0.55
print( bisection(array,val))
%timeit bisection(array,val)
print( find_nearest1(array,val))
%timeit find_nearest1(array,val)
print( find_nearest2(array,val))
%timeit find_nearest2(array,val)
print( find_nearest3(array,val))
%timeit find_nearest3(array,val)
print( find_nearest4(array,val))
%timeit find_nearest4(array,val)
print( find_nearest5(array,val))
%timeit find_nearest5(array,val)
print( find_nearest6(array,val))
%timeit find_nearest6(array,val)
(50000, 50000)
100000 loops, best of 3: 4.4 µs per loop
50001
1 loop, best of 3: 180 ms per loop
50001
1000 loops, best of 3: 267 µs per loop
[50000]
1000 loops, best of 3: 390 µs per loop
50001
1000 loops, best of 3: 259 µs per loop
50001
1000 loops, best of 3: 1.21 ms per loop
[50000]
1000 loops, best of 3: 746 µs per loop
对于大型数组,二分法给出 4us,而下一个最佳时间为 180us,最长时间为 1.21ms(快约 100 - 1000 倍)。对于较小的数组,它快约 2-100 倍。
解决方案 5:
values
如果您需要搜索多个内容(values
可以是多维数组),这里有一个@Dimitri 解决方案的快速矢量化版本:
# `values` should be sorted
def get_closest(array, values):
# make sure array is a numpy array
array = np.array(array)
# get insert positions
idxs = np.searchsorted(array, values, side="left")
# find indexes where previous index is closer
prev_idx_is_less = ((idxs == len(array))|(np.fabs(values - array[np.maximum(idxs-1, 0)]) < np.fabs(values - array[np.minimum(idxs, len(array)-1)])))
idxs[prev_idx_is_less] -= 1
return array[idxs]
基准
for
> 比使用@Demitri 解决方案的循环快 100 倍`
>>> %timeit ar=get_closest(np.linspace(1, 1000, 100), np.random.randint(0, 1050, (1000, 1000)))
139 ms ± 4.04 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
>>> %timeit ar=[find_nearest(np.linspace(1, 1000, 100), value) for value in np.random.randint(0, 1050, 1000*1000)]
took 21.4 seconds
解决方案 6:
这是一个在向量数组中查找最近向量的扩展。
import numpy as np
def find_nearest_vector(array, value):
idx = np.array([np.linalg.norm(x+y) for (x,y) in array-value]).argmin()
return array[idx]
A = np.random.random((10,2))*100
""" A = array([[ 34.19762933, 43.14534123],
[ 48.79558706, 47.79243283],
[ 38.42774411, 84.87155478],
[ 63.64371943, 50.7722317 ],
[ 73.56362857, 27.87895698],
[ 96.67790593, 77.76150486],
[ 68.86202147, 21.38735169],
[ 5.21796467, 59.17051276],
[ 82.92389467, 99.90387851],
[ 6.76626539, 30.50661753]])"""
pt = [6, 30]
print find_nearest_vector(A,pt)
# array([ 6.76626539, 30.50661753])
解决方案 7:
如果你不想使用 numpy,可以这样做:
def find_nearest(array, value):
n = [abs(i-value) for i in array]
idx = n.index(min(n))
return array[idx]
解决方案 8:
这是一个处理非标量“值”数组的版本:
import numpy as np
def find_nearest(array, values):
indices = np.abs(np.subtract.outer(array, values)).argmin(0)
return array[indices]
或者,如果输入是标量,则返回数字类型(例如 int、float):
def find_nearest(array, values):
values = np.atleast_1d(values)
indices = np.abs(np.subtract.outer(array, values)).argmin(0)
out = array[indices]
return out if len(out) > 1 else out[0]
解决方案 9:
这是针对@Ari Onasafari 的 scipy 版本,答案是“在向量数组中找到最近的向量”
In [1]: from scipy import spatial
In [2]: import numpy as np
In [3]: A = np.random.random((10,2))*100
In [4]: A
Out[4]:
array([[ 68.83402637, 38.07632221],
[ 76.84704074, 24.9395109 ],
[ 16.26715795, 98.52763827],
[ 70.99411985, 67.31740151],
[ 71.72452181, 24.13516764],
[ 17.22707611, 20.65425362],
[ 43.85122458, 21.50624882],
[ 76.71987125, 44.95031274],
[ 63.77341073, 78.87417774],
[ 8.45828909, 30.18426696]])
In [5]: pt = [6, 30] # <-- the point to find
In [6]: A[spatial.KDTree(A).query(pt)[1]] # <-- the nearest point
Out[6]: array([ 8.45828909, 30.18426696])
#how it works!
In [7]: distance,index = spatial.KDTree(A).query(pt)
In [8]: distance # <-- The distances to the nearest neighbors
Out[8]: 2.4651855048258393
In [9]: index # <-- The locations of the neighbors
Out[9]: 9
#then
In [10]: A[index]
Out[10]: array([ 8.45828909, 30.18426696])
解决方案 10:
对于大型数组,@Demitri 给出的 (优秀) 答案比当前标记为最佳的答案要快得多。我通过以下两种方式调整了他的精确算法:
无论输入数组是否已排序,下面的函数都可以起作用。
下面的函数返回与最接近的值相对应的输入数组的索引,这有点更为通用。
请注意,下面的函数还处理了特定的边缘情况,这会导致@Demitri 编写的原始函数出现错误。除此之外,我的算法与他的算法完全相同。
def find_idx_nearest_val(array, value):
idx_sorted = np.argsort(array)
sorted_array = np.array(array[idx_sorted])
idx = np.searchsorted(sorted_array, value, side="left")
if idx >= len(array):
idx_nearest = idx_sorted[len(array)-1]
elif idx == 0:
idx_nearest = idx_sorted[0]
else:
if abs(value - sorted_array[idx-1]) < abs(value - sorted_array[idx]):
idx_nearest = idx_sorted[idx-1]
else:
idx_nearest = idx_sorted[idx]
return idx_nearest
解决方案 11:
我认为最符合 Python 风格的方法是:
num = 65 # Input number
array = np.random.random((10))*100 # Given array
nearest_idx = np.where(abs(array-num)==abs(array-num).min())[0] # If you want the index of the element of array (array) nearest to the the given number (num)
nearest_val = array[abs(array-num)==abs(array-num).min()] # If you directly want the element of array (array) nearest to the given number (num)
这是基本代码。你可以将其用作函数
解决方案 12:
所有答案都有助于收集信息以编写高效的代码。但是,我编写了一个小型 Python 脚本来针对各种情况进行优化。如果提供的数组已排序,那将是最好的情况。如果搜索指定值的最近点的索引,则bisect
模块是最省时的。当搜索与数组相对应的索引时,是最numpy searchsorted
高效的。
import numpy as np
import bisect
xarr = np.random.rand(int(1e7))
srt_ind = xarr.argsort()
xar = xarr.copy()[srt_ind]
xlist = xar.tolist()
bisect.bisect_left(xlist, 0.3)
在 [63] 中:%time bisect.bisect_left(xlist, 0.3) CPU 时间:用户 0 ns,系统:0 ns,总计:0 ns 挂钟时间:22.2 µs
np.searchsorted(xar, 0.3, side="left")
在 [64] 中:%time np.searchsorted(xar, 0.3, side="left") CPU 时间:用户 0 ns,系统:0 ns,总计:0 ns 挂钟时间:98.9 µs
randpts = np.random.rand(1000)
np.searchsorted(xar, randpts, side="left")
%time np.searchsorted(xar, randpts, side="left") CPU 时间:用户 4 毫秒,系统:0 纳秒,总计:4 毫秒 挂钟时间:1.2 毫秒
如果我们遵循乘法规则,那么 numpy 应该需要约 100 毫秒,这意味着速度快约 83 倍。
解决方案 13:
这是unutbu 答案的矢量化版本:
def find_nearest(array, values):
array = np.asarray(array)
# the last dim must be 1 to broadcast in (array - values) below.
values = np.expand_dims(values, axis=-1)
indices = np.abs(array - values).argmin(axis=-1)
return array[indices]
image = plt.imread('example_3_band_image.jpg')
print(image.shape) # should be (nrows, ncols, 3)
quantiles = np.linspace(0, 255, num=2 ** 2, dtype=np.uint8)
quantiled_image = find_nearest(quantiles, image)
print(quantiled_image.shape) # should be (nrows, ncols, 3)
解决方案 14:
可能有助于ndarrays
:
def find_nearest(X, value):
return X[np.unravel_index(np.argmin(np.abs(X - value)), X.shape)]
解决方案 15:
对于那些寻找多个最近的答案的人来说,修改接受的答案:
import numpy as np
def find_nearest(array, value, k):
array = np.asarray(array)
idx = np.argsort(abs(array - value))[:k]
return array[idx]
请参阅:
https://stackoverflow.com/a/66937734/11671779
解决方案 16:
对于二维数组,确定最近元素的 i, j 位置:
import numpy as np
def find_nearest(a, a0):
idx = (np.abs(a - a0)).argmin()
w = a.shape[1]
i = idx // w
j = idx - i * w
return a[i,j], i, j
解决方案 17:
这是一个适用于二维数组的版本,如果用户有 scipy 的cdist函数,则使用它,如果没有,则使用更简单的距离计算。
默认情况下,输出是最接近您输入值的索引,但您可以使用关键字output
将其更改为'index'
、'value'
或之一'both'
,其中'value'
输出array[index]
和'both'
输出index, array[index]
。
对于非常大的数组,您可能需要使用kind='euclidean'
,因为默认的 scipy cdist 函数可能会耗尽内存。
这可能不是绝对最快的解决方案,但已经很接近了。
def find_nearest_2d(array, value, kind='cdist', output='index'):
# 'array' must be a 2D array
# 'value' must be a 1D array with 2 elements
# 'kind' defines what method to use to calculate the distances. Can choose one
# of 'cdist' (default) or 'euclidean'. Choose 'euclidean' for very large
# arrays. Otherwise, cdist is much faster.
# 'output' defines what the output should be. Can be 'index' (default) to return
# the index of the array that is closest to the value, 'value' to return the
# value that is closest, or 'both' to return index,value
import numpy as np
if kind == 'cdist':
try: from scipy.spatial.distance import cdist
except ImportError:
print("Warning (find_nearest_2d): Could not import cdist. Reverting to simpler distance calculation")
kind = 'euclidean'
index = np.where(array == value)[0] # Make sure the value isn't in the array
if index.size == 0:
if kind == 'cdist': index = np.argmin(cdist([value],array)[0])
elif kind == 'euclidean': index = np.argmin(np.sum((np.array(array)-np.array(value))**2.,axis=1))
else: raise ValueError("Keyword 'kind' must be one of 'cdist' or 'euclidean'")
if output == 'index': return index
elif output == 'value': return array[index]
elif output == 'both': return index,array[index]
else: raise ValueError("Keyword 'output' must be one of 'index', 'value', or 'both'")
解决方案 18:
import numpy as np
def find_nearest(array, value):
array = np.array(array)
z=np.abs(array-value)
y= np.where(z == z.min())
m=np.array(y)
x=m[0,0]
y=m[1,0]
near_value=array[x,y]
return near_value
array =np.array([[60,200,30],[3,30,50],[20,1,-50],[20,-500,11]])
print(array)
value = 0
print(find_nearest(array, value))
解决方案 19:
这个使用numpy searchsorted处理任意数量的查询,因此在对输入数组进行排序后,速度同样快。它也适用于 2d、3d 等常规网格:
#!/usr/bin/env python3
# keywords: nearest-neighbor regular-grid python numpy searchsorted Voronoi
import numpy as np
#...............................................................................
class Near_rgrid( object ):
""" nearest neighbors on a Manhattan aka regular grid
1d:
near = Near_rgrid( x: sorted 1d array )
nearix = near.query( q: 1d ) -> indices of the points x_i nearest each q_i
x[nearix[0]] is the nearest to q[0]
x[nearix[1]] is the nearest to q[1] ...
nearpoints = x[nearix] is near q
If A is an array of e.g. colors at x[0] x[1] ...,
A[nearix] are the values near q[0] q[1] ...
Query points < x[0] snap to x[0], similarly > x[-1].
2d: on a Manhattan aka regular grid,
streets running east-west at y_i, avenues north-south at x_j,
near = Near_rgrid( y, x: sorted 1d arrays, e.g. latitide longitude )
I, J = near.query( q: nq × 2 array, columns qy qx )
-> nq × 2 indices of the gridpoints y_i x_j nearest each query point
gridpoints = np.column_stack(( y[I], x[J] )) # e.g. street corners
diff = gridpoints - querypoints
distances = norm( diff, axis=1, ord= )
Values at an array A definded at the gridpoints y_i x_j nearest q: A[I,J]
3d: Near_rgrid( z, y, x: 1d axis arrays ) .query( q: nq × 3 array )
See Howitworks below, and the plot Voronoi-random-regular-grid.
"""
def __init__( self, *axes: "1d arrays" ):
axarrays = []
for ax in axes:
axarray = np.asarray( ax ).squeeze()
assert axarray.ndim == 1, "each axis should be 1d, not %s " % (
str( axarray.shape ))
axarrays += [axarray]
self.midpoints = [_midpoints( ax ) for ax in axarrays]
self.axes = axarrays
self.ndim = len(axes)
def query( self, queries: "nq × dim points" ) -> "nq × dim indices":
""" -> the indices of the nearest points in the grid """
queries = np.asarray( queries ).squeeze() # or list x y z ?
if self.ndim == 1:
assert queries.ndim <= 1, queries.shape
return np.searchsorted( self.midpoints[0], queries ) # scalar, 0d ?
queries = np.atleast_2d( queries )
assert queries.shape[1] == self.ndim, [
queries.shape, self.ndim]
return [np.searchsorted( mid, q ) # parallel: k axes, k processors
for mid, q in zip( self.midpoints, queries.T )]
def snaptogrid( self, queries: "nq × dim points" ):
""" -> the nearest points in the grid, 2d [[y_j x_i] ...] """
ix = self.query( queries )
if self.ndim == 1:
return self.axes[0][ix]
else:
axix = [ax[j] for ax, j in zip( self.axes, ix )]
return np.array( axix )
def _midpoints( points: "array-like 1d, *must be sorted*" ) -> "1d":
points = np.asarray( points ).squeeze()
assert points.ndim == 1, points.shape
diffs = np.diff( points )
assert np.nanmin( diffs ) > 0, "the input array must be sorted, not %s " % (
points.round( 2 ))
return (points[:-1] + points[1:]) / 2 # floats
#...............................................................................
Howitworks = \n"""
How Near_rgrid works in 1d:
Consider the midpoints halfway between fenceposts | | |
The interval [left midpoint .. | .. right midpoint] is what's nearest each post --
| | | | points
| . | . | . | midpoints
^^^^^^ . nearest points[1]
^^^^^^^^^^^^^^^ nearest points[2] etc.
2d:
I, J = Near_rgrid( y, x ).query( q )
I = nearest in `x`
J = nearest in `y` independently / in parallel.
The points nearest [yi xj] in a regular grid (its Voronoi cell)
form a rectangle [left mid x .. right mid x] × [left mid y .. right mid y]
(in any norm ?)
See the plot Voronoi-random-regular-grid.
Notes
-----
If a query point is exactly halfway between two data points,
e.g. on a grid of ints, the lines (x + 1/2) U (y + 1/2),
which "nearest" you get is implementation-dependent, unpredictable.
"""
Murky = \n""" NaNs in points, in queries ?
"""
__version__ = "2021-10-25 oct denis-bz-py"
解决方案 20:
我这里有一个用于排序输入的版本,对于 A 中的某些值,可以找到 B 中最接近元素的索引:
from cmath import inf
import numba
import numpy as np
@numba.njit
def get_indices_of_closest_questioned_points(
interogators: npt.NDArray,
questioned: npt.NDArray,
) -> npt.NDArray:
"""For each element in `interogators` get the index of the closest element in set `questioned`.
"""
res = np.empty(shape=interogators.shape, dtype=np.uint32)
N = len(interogators)
M = len(questioned)
n = m = 0
closest_left_to_x = -inf
while n < N and m < M:
x = interogators[n]
y = questioned[m]
if y < x:
closest_left_to_x = y
m += 1
else:
res[n] = m - (x - closest_left_to_x < y - x)
n += 1
while n < N:
res[n] = M - 1
n += 1
return res
排序是一种经过高度优化的操作,根据输入和所用的算法,其运行时间为 O(nlogn) 或 O(n)。上面的代码显然也是 O(n),numba
这使其运行速度更快numpy
。
以下是示例用法:
In [12]: get_indices_of_closest_questioned_points(np.array([0,5,10]), np.array([-1,2,6,8,9,10]))
Out[12]: array([0, 2, 5], dtype=uint32)
结果是0 2 5
因为 -1 最接近 0,它是第二个数组的第 0 个元素,5 最接近 6,即第二个数组中的第 2 个元素,依此类推。
如果输入为[0]
和,则将返回[-1,1]
最接近的第一个元素。-1
最好的祝愿,
解决方案 21:
这是一个适用于不同形状的非常简单的答案:
def round_to_nearest_in(a, b):
n = len(b)
shp = list(a.shape) + [n]
broad = np.repeat(a, n).reshape((shp))
diffs = np.abs(broad - b)
return b[diffs.argmin(-1)]
例如:
a = np.random.rand(10).reshape((5,2))
b = np.array([-1, 0, 1])
round_to_nearest_in(a, b)
唯一需要注意的是,它将创建一个中间数组,其大小对于大和来说= a.size*len(b)
可能会变得相当大。a
`b`
- 2024年20款好用的项目管理软件推荐,项目管理提效的20个工具和技巧
- 2024年开源项目管理软件有哪些?推荐5款好用的项目管理工具
- 2024年常用的项目管理软件有哪些?推荐这10款国内外好用的项目管理工具
- 项目管理软件有哪些?推荐7款超好用的项目管理工具
- 项目管理软件有哪些最好用?推荐6款好用的项目管理工具
- 项目管理软件哪个最好用?盘点推荐5款好用的项目管理工具
- 项目管理软件有哪些,盘点推荐国内外超好用的7款项目管理工具
- 项目管理软件排行榜:2024年项目经理必备5款开源项目管理软件汇总
- 项目管理必备:盘点2024年13款好用的项目管理软件
- 2024项目管理软件排行榜(10类常用的项目管理工具全推荐)