使用 Scipy(Python)将经验分布与理论分布拟合?

2024-12-19 09:23:00
admin
原创
141
摘要:问题描述:简介:我有一个包含 30,000 多个整数值的列表,范围从 0 到 47(含 0 和 47),例如[0,0,0,0,..,1,1,1,1,...,2,2,2,2,...,47,47,47,...]从某个连续分布中采样。列表中的值不一定按顺序排列,但顺序对于这个问题来说并不重要。问题:根据我的分布,我...

问题描述:

简介:我有一个包含 30,000 多个整数值的列表,范围从 0 到 47(含 0 和 47),例如[0,0,0,0,..,1,1,1,1,...,2,2,2,2,...,47,47,47,...]从某个连续分布中采样。列表中的值不一定按顺序排列,但顺序对于这个问题来说并不重要。

问题:根据我的分布,我想计算任何给定值的 p 值(看到更大值的概率)。例如,正如您所见,0 的 p 值将接近 1,而更大数字的 p 值将趋向于 0。

我不知道我是否正确,但为了确定概率,我认为我需要将我的数据拟合到最适合描述我的数据的理论分布中。我假设需要某种拟合优度检验来确定最佳模型。

有没有办法用 Python (ScipyNumpy) 实现这样的分析?你能举些例子吗?


解决方案 1:

利用平方误差和 (SSE) 进行分布拟合

这是对Saullo 的答案的更新和修改,它使用当前scipy.stats分布的完整列表,并返回分布的直方图和数据的直方图之间SSE最小的分布。

示例试穿

使用 的厄尔尼诺数据集statsmodels,拟合分布并确定误差。返回误差最小的分布。

所有发行版

所有拟合分布

最佳拟合分布

最佳拟合分布

示例代码

%matplotlib inline

import warnings
import numpy as np
import pandas as pd
import scipy.stats as st
import statsmodels.api as sm
from scipy.stats._continuous_distns import _distn_names
import matplotlib
import matplotlib.pyplot as plt

matplotlib.rcParams['figure.figsize'] = (16.0, 12.0)
matplotlib.style.use('ggplot')

# Create models from data
def best_fit_distribution(data, bins=200, ax=None):
    """Model data by finding best fit distribution to data"""
    # Get histogram of original data
    y, x = np.histogram(data, bins=bins, density=True)
    x = (x + np.roll(x, -1))[:-1] / 2.0

    # Best holders
    best_distributions = []

    # Estimate distribution parameters from data
    for ii, distribution in enumerate([d for d in _distn_names if not d in ['levy_stable', 'studentized_range']]):

        print("{:>3} / {:<3}: {}".format( ii+1, len(_distn_names), distribution ))

        distribution = getattr(st, distribution)

        # Try to fit the distribution
        try:
            # Ignore warnings from data that can't be fit
            with warnings.catch_warnings():
                warnings.filterwarnings('ignore')
                
                # fit dist to data
                params = distribution.fit(data)

                # Separate parts of parameters
                arg = params[:-2]
                loc = params[-2]
                scale = params[-1]
                
                # Calculate fitted PDF and error with fit in distribution
                pdf = distribution.pdf(x, loc=loc, scale=scale, *arg)
                sse = np.sum(np.power(y - pdf, 2.0))
                
                # if axis pass in add to plot
                try:
                    if ax:
                        pd.Series(pdf, x).plot(ax=ax)
                    end
                except Exception:
                    pass

                # identify if this distribution is better
                best_distributions.append((distribution, params, sse))
        
        except Exception:
            pass

    
    return sorted(best_distributions, key=lambda x:x[2])

def make_pdf(dist, params, size=10000):
    """Generate distributions's Probability Distribution Function """

    # Separate parts of parameters
    arg = params[:-2]
    loc = params[-2]
    scale = params[-1]

    # Get sane start and end points of distribution
    start = dist.ppf(0.01, *arg, loc=loc, scale=scale) if arg else dist.ppf(0.01, loc=loc, scale=scale)
    end = dist.ppf(0.99, *arg, loc=loc, scale=scale) if arg else dist.ppf(0.99, loc=loc, scale=scale)

    # Build PDF and turn into pandas Series
    x = np.linspace(start, end, size)
    y = dist.pdf(x, loc=loc, scale=scale, *arg)
    pdf = pd.Series(y, x)

    return pdf

# Load data from statsmodels datasets
data = pd.Series(sm.datasets.elnino.load_pandas().data.set_index('YEAR').values.ravel())

# Plot for comparison
plt.figure(figsize=(12,8))
ax = data.plot(kind='hist', bins=50, density=True, alpha=0.5, color=list(matplotlib.rcParams['axes.prop_cycle'])[1]['color'])

# Save plot limits
dataYLim = ax.get_ylim()

# Find best fit distribution
best_distibutions = best_fit_distribution(data, 200, ax)
best_dist = best_distibutions[0]

# Update plots
ax.set_ylim(dataYLim)
ax.set_title(u'El Niño sea temp.
 All Fitted Distributions')
ax.set_xlabel(u'Temp (°C)')
ax.set_ylabel('Frequency')

# Make PDF with best params 
pdf = make_pdf(best_dist[0], best_dist[1])

# Display
plt.figure(figsize=(12,8))
ax = pdf.plot(lw=2, label='PDF', legend=True)
data.plot(kind='hist', bins=50, density=True, alpha=0.5, label='Data', legend=True, ax=ax)

param_names = (best_dist[0].shapes + ', loc, scale').split(', ') if best_dist[0].shapes else ['loc', 'scale']
param_str = ', '.join(['{}={:0.2f}'.format(k,v) for k,v in zip(param_names, best_dist[1])])
dist_str = '{}({})'.format(best_dist[0].name, param_str)

ax.set_title(u'El Niño sea temp. with best fit distribution 
' + dist_str)
ax.set_xlabel(u'Temp. (°C)')
ax.set_ylabel('Frequency')

解决方案 2:

SciPy v1.6.0 中实现了 90 多个分布函数。你可以使用它们的fit()方法测试其中一些函数如何适合你的数据。查看以下代码了解更多详细信息:

在此处输入图片描述

import matplotlib.pyplot as plt
import numpy as np
import scipy
import scipy.stats
size = 30000
x = np.arange(size)
y = scipy.int_(np.round_(scipy.stats.vonmises.rvs(5,size=size)*47))
h = plt.hist(y, bins=range(48))

dist_names = ['gamma', 'beta', 'rayleigh', 'norm', 'pareto']

for dist_name in dist_names:
    dist = getattr(scipy.stats, dist_name)
    params = dist.fit(y)
    arg = params[:-2]
    loc = params[-2]
    scale = params[-1]
    if arg:
        pdf_fitted = dist.pdf(x, *arg, loc=loc, scale=scale) * size
    else:
        pdf_fitted = dist.pdf(x, loc=loc, scale=scale) * size
    plt.plot(pdf_fitted, label=dist_name)
    plt.xlim(0,47)
plt.legend(loc='upper right')
plt.show()

参考:

  • 拟合分布、拟合优度、p 值。可以使用 Scipy (Python) 执行此操作吗?

  • 使用 Scipy 进行分布拟合

这里列出了 Scipy 0.12.0 (VI) 中所有可用的分布函数的名称:

dist_names = [ 'alpha', 'anglit', 'arcsine', 'beta', 'betaprime', 'bradford', 'burr', 'cauchy', 'chi', 'chi2', 'cosine', 'dgamma', 'dweibull', 'erlang', 'expon', 'exponweib', 'exponpow', 'f', 'fatiguelife', 'fisk', 'foldcauchy', 'foldnorm', 'frechet_r', 'frechet_l', 'genlogistic', 'genpareto', 'genexpon', 'genextreme', 'gausshyper', 'gamma', 'gengamma', 'genhalflogistic', 'gilbrat', 'gompertz', 'gumbel_r', 'gumbel_l', 'halfcauchy', 'halflogistic', 'halfnorm', 'hypsecant', 'invgamma', 'invgauss', 'invweibull', 'johnsonsb', 'johnsonsu', 'ksone', 'kstwobign', 'laplace', 'logistic', 'loggamma', 'loglaplace', 'lognorm', 'lomax', 'maxwell', 'mielke', 'nakagami', 'ncx2', 'ncf', 'nct', 'norm', 'pareto', 'pearson3', 'powerlaw', 'powerlognorm', 'powernorm', 'rdist', 'reciprocal', 'rayleigh', 'rice', 'recipinvgauss', 'semicircular', 't', 'triang', 'truncexpon', 'truncnorm', 'tukeylambda', 'uniform', 'vonmises', 'wald', 'weibull_min', 'weibull_max', 'wrapcauchy'] 

解决方案 3:

你可以尝试distfit 库。如果你有更多问题,请告诉我,我也是这个开源库的开发者。

pip install distfit

# Create 1000 random integers, value between [0-50]
X = np.random.randint(0, 50,1000)

# Retrieve P-value for y
y = [0,10,45,55,100]

# From the distfit library import the class distfit
from distfit import distfit

# Initialize.
# Set any properties here, such as alpha.
# The smoothing can be of use when working with integers. Otherwise your histogram
# may be jumping up-and-down, and getting the correct fit may be harder.
dist = distfit(alpha=0.05, smooth=10)

# Search for best theoretical fit on your empirical data
dist.fit_transform(X)

> [distfit] >fit..
> [distfit] >transform..
> [distfit] >[norm      ] [RSS: 0.0037894] [loc=23.535 scale=14.450] 
> [distfit] >[expon     ] [RSS: 0.0055534] [loc=0.000 scale=23.535] 
> [distfit] >[pareto    ] [RSS: 0.0056828] [loc=-384473077.778 scale=384473077.778] 
> [distfit] >[dweibull  ] [RSS: 0.0038202] [loc=24.535 scale=13.936] 
> [distfit] >[t         ] [RSS: 0.0037896] [loc=23.535 scale=14.450] 
> [distfit] >[genextreme] [RSS: 0.0036185] [loc=18.890 scale=14.506] 
> [distfit] >[gamma     ] [RSS: 0.0037600] [loc=-175.505 scale=1.044] 
> [distfit] >[lognorm   ] [RSS: 0.0642364] [loc=-0.000 scale=1.802] 
> [distfit] >[beta      ] [RSS: 0.0021885] [loc=-3.981 scale=52.981] 
> [distfit] >[uniform   ] [RSS: 0.0012349] [loc=0.000 scale=49.000] 

# Best fitted model
best_distr = dist.model
print(best_distr)

# Uniform shows best fit, with 95% CII (confidence intervals), and all other parameters
> {'distr': <scipy.stats._continuous_distns.uniform_gen at 0x16de3a53160>,
>  'params': (0.0, 49.0),
>  'name': 'uniform',
>  'RSS': 0.0012349021241149533,
>  'loc': 0.0,
>  'scale': 49.0,
>  'arg': (),
>  'CII_min_alpha': 2.45,
>  'CII_max_alpha': 46.55}

# Ranking distributions
dist.summary

# Plot the summary of fitted distributions
dist.plot_summary()

在此处输入图片描述

# Make prediction on new datapoints based on the fit
dist.predict(y)

# Retrieve your pvalues with 
dist.y_pred
# array(['down', 'none', 'none', 'up', 'up'], dtype='<U4')
dist.y_proba
array([0.02040816, 0.02040816, 0.02040816, 0.        , 0.        ])

# Or in one dataframe
dist.df

# The plot function will now also include the predictions of y
dist.plot()

最佳适配

请注意,在这种情况下,由于分布均匀,所有点都将具有显著性。如有必要,您可以使用 dist.y_pred 进行过滤。

更详细的信息和示例可以在文档页面中找到。

解决方案 4:

fit()@Saullo Castro 提到的方法提供了最大似然估计 (MLE)。最适合您数据的分布是给您最高值的分布,可以通过几种不同的方式确定:

1,给出最高对数似然的那个。

2、给出最小 AIC、BIC 或 BICc 值的那个(参见 wiki: http: //en.wikipedia.org/wiki/Akaike_information_criterion,基本上可以看作是调整参数数量的对数似然,因为具有更多参数的分布预计会更好地拟合)

3、最大化贝叶斯后验概率。(参见维基: http: //en.wikipedia.org/wiki/Posterior_probability)

当然,如果您已经有一个可以描述您的数据的分布(基于您所在特定领域的理论)并且想要坚持使用这个分布,那么您将跳过识别最佳拟合分布的步骤。

scipy没有附带计算对数似然的函数(尽管提供了 MLE 方法),但硬编码很容易:请参阅scipy.stat.distributions的内置概率密度函数是否比用户提供的函数慢?

解决方案 5:

AFAICU,您的分布是离散的(而且只是离散的)。因此,只需计算不同值的频率并对其进行归一化就足以满足您的目的。因此,举一个例子来证明这一点:

In []: values= [0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4]
In []: counts= asarray(bincount(values), dtype= float)
In []: cdf= counts.cumsum()/ counts.sum()

因此,看到高于的值的概率1很简单(根据互补累积分布函数(ccdf):

In []: 1- cdf[1]
Out[]: 0.40000000000000002

请注意,ccdf与生存函数 (sf)密切相关,但它也是用离散分布定义的,而sf仅为连续分布定义。

解决方案 6:

以下代码是通用答案的版本,但经过了修正和澄清。

import numpy as np
import pandas as pd
import scipy.stats as st
import statsmodels.api as sm
import matplotlib as mpl
import matplotlib.pyplot as plt
import math
import random

mpl.style.use("ggplot")

def danoes_formula(data):
    """
    DANOE'S FORMULA
    https://en.wikipedia.org/wiki/Histogram#Doane's_formula
    """
    N = len(data)
    skewness = st.skew(data)
    sigma_g1 = math.sqrt((6*(N-2))/((N+1)*(N+3)))
    num_bins = 1 + math.log(N,2) + math.log(1+abs(skewness)/sigma_g1,2)
    num_bins = round(num_bins)
    return num_bins

def plot_histogram(data, results, n):
    ## n first distribution of the ranking
    N_DISTRIBUTIONS = {k: results[k] for k in list(results)[:n]}

    ## Histogram of data
    plt.figure(figsize=(10, 5))
    plt.hist(data, density=True, ec='white', color=(63/235, 149/235, 170/235))
    plt.title('HISTOGRAM')
    plt.xlabel('Values')
    plt.ylabel('Frequencies')

    ## Plot n distributions
    for distribution, result in N_DISTRIBUTIONS.items():
        # print(i, distribution)
        sse = result[0]
        arg = result[1]
        loc = result[2]
        scale = result[3]
        x_plot = np.linspace(min(data), max(data), 1000)
        y_plot = distribution.pdf(x_plot, loc=loc, scale=scale, *arg)
        plt.plot(x_plot, y_plot, label=str(distribution)[32:-34] + ": " + str(sse)[0:6], color=(random.uniform(0, 1), random.uniform(0, 1), random.uniform(0, 1)))
    
    plt.legend(title='DISTRIBUTIONS', bbox_to_anchor=(1.05, 1), loc='upper left')
    plt.show()

def fit_data(data):
    ## st.frechet_r,st.frechet_l: are disbled in current SciPy version
    ## st.levy_stable: a lot of time of estimation parameters
    ALL_DISTRIBUTIONS = [        
        st.alpha,st.anglit,st.arcsine,st.beta,st.betaprime,st.bradford,st.burr,st.cauchy,st.chi,st.chi2,st.cosine,
        st.dgamma,st.dweibull,st.erlang,st.expon,st.exponnorm,st.exponweib,st.exponpow,st.f,st.fatiguelife,st.fisk,
        st.foldcauchy,st.foldnorm, st.genlogistic,st.genpareto,st.gennorm,st.genexpon,
        st.genextreme,st.gausshyper,st.gamma,st.gengamma,st.genhalflogistic,st.gilbrat,st.gompertz,st.gumbel_r,
        st.gumbel_l,st.halfcauchy,st.halflogistic,st.halfnorm,st.halfgennorm,st.hypsecant,st.invgamma,st.invgauss,
        st.invweibull,st.johnsonsb,st.johnsonsu,st.ksone,st.kstwobign,st.laplace,st.levy,st.levy_l,
        st.logistic,st.loggamma,st.loglaplace,st.lognorm,st.lomax,st.maxwell,st.mielke,st.nakagami,st.ncx2,st.ncf,
        st.nct,st.norm,st.pareto,st.pearson3,st.powerlaw,st.powerlognorm,st.powernorm,st.rdist,st.reciprocal,
        st.rayleigh,st.rice,st.recipinvgauss,st.semicircular,st.t,st.triang,st.truncexpon,st.truncnorm,st.tukeylambda,
        st.uniform,st.vonmises,st.vonmises_line,st.wald,st.weibull_min,st.weibull_max,st.wrapcauchy
    ]
    
    MY_DISTRIBUTIONS = [st.beta, st.expon, st.norm, st.uniform, st.johnsonsb, st.gennorm, st.gausshyper]

    ## Calculae Histogram
    num_bins = danoes_formula(data)
    frequencies, bin_edges = np.histogram(data, num_bins, density=True)
    central_values = [(bin_edges[i] + bin_edges[i+1])/2 for i in range(len(bin_edges)-1)]

    results = {}
    for distribution in MY_DISTRIBUTIONS:
        ## Get parameters of distribution
        params = distribution.fit(data)
        
        ## Separate parts of parameters
        arg = params[:-2]
        loc = params[-2]
        scale = params[-1]
    
        ## Calculate fitted PDF and error with fit in distribution
        pdf_values = [distribution.pdf(c, loc=loc, scale=scale, *arg) for c in central_values]
        
        ## Calculate SSE (sum of squared estimate of errors)
        sse = np.sum(np.power(frequencies - pdf_values, 2.0))
        
        ## Build results and sort by sse
        results[distribution] = [sse, arg, loc, scale]
        
    results = {k: results[k] for k in sorted(results, key=results.get)}
    return results
        
def main():
    ## Import data
    data = pd.Series(sm.datasets.elnino.load_pandas().data.set_index('YEAR').values.ravel())
    results = fit_data(data)
    plot_histogram(data, results, 5)

if __name__ == "__main__":
    main()

在此处输入图片描述

如果你想做更详细的分析,我推荐Phittter库

import phitter

data: list[int | float] = [...]

phitter_cont = phitter.PHITTER(
    data=data,
    fit_type="continuous",
    num_bins=15,
    confidence_level=0.95,
    minimum_sse=1e-2,
    distributions_to_fit=["beta", "normal", "fatigue_life", "triangular"],
)
phitter_cont.fit(n_workers=6)

解决方案 7:

虽然上述许多答案都是完全有效的,但似乎没有人能完全回答你的问题,特别是以下部分:

我不知道我是否正确,但为了确定概率,我认为我需要将我的数据拟合到最适合描述我的数据的理论分布中。我假设需要某种拟合优度检验来确定最佳模型。

参数化方法

这是您所描述的使用某些理论分布并将参数拟合到您的数据的过程,并且有一些关于如何做到这一点的很好的答案。

非参数方法

但是,您也可以使用非参数方法来解决您的问题,这意味着您根本不假设任何底层分布。

通过使用所谓的经验分布函数,其等于:
Fn(x)= SUM( I[X<=x] ) / n。因此,低于 x 的值的比例。

正如上述答案之一指出的那样,您感兴趣的是逆 CDF(累积分布函数),它等于1-F(x)

可以证明,经验分布函数将收敛到生成数据的任何“真实”CDF。

此外,可以通过以下方法直接构建 1-alpha 置信区间:

L(X) = max{Fn(x)-en, 0}
U(X) = min{Fn(x)+en, 0}
en = sqrt( (1/2n)*log(2/alpha)

然后对于所有 x,P( L(X) <= F(X) <= U(X) ) >= 1-alpha 。

我很惊讶PierrOz 的答案有 0 票,而它是使用非参数方法估计 F(x) 的问题的完全有效的答案。

请注意,您提到的 P(X>=x)=0(对于任何 x>47)的问题只是个人偏好,可能会导致您选择参数方法而不是非参数方法。然而,这两种方法都是您问题的完全有效的解决方案。

有关上述陈述的更多细节和证明,我建议你看一下 Larry A. Wasserman 的《统计学全书:统计推断简明课程》。这是一本关于参数和非参数推断的优秀书籍。

编辑:
由于您特别要求提供一些 python 示例,因此可以使用 numpy 来完成:

import numpy as np

def empirical_cdf(data, x):
    return np.sum(x<=data)/len(data)

def p_value(data, x):
    return 1-empirical_cdf(data, x)

# Generate some data for demonstration purposes
data = np.floor(np.random.uniform(low=0, high=48, size=30000))

print(empirical_cdf(data, 20))
print(p_value(data, 20)) # This is the value you're interested in

解决方案 8:

我发现最简单的方法是使用 fitter 模块,您pip install fitter只需导入 pandas 数据集即可。它具有内置函数,可以从 scipy 搜索所有 80 个分布,并通过各种方法获得与数据的最佳拟合。示例:

f = Fitter(height, distributions=['gamma','lognorm', "beta","burr","norm"])
f.fit()
f.summary()

这里作者提供了一个发行版列表,因为扫描全部 80 个发行版可能会很耗时。

f.get_best(method = 'sumsquare_error')

这将为你提供 5 个符合其拟合标准的最佳分布:

            sumsquare_error    aic          bic       kl_div
chi2             0.000010  1716.234916 -1945.821606     inf
gamma            0.000010  1716.234909 -1945.821606     inf
rayleigh         0.000010  1711.807360 -1945.526026     inf
norm             0.000011  1758.797036 -1934.865211     inf
cauchy           0.000011  1762.735606 -1934.803414     inf

您还拥有distributions=get_common_distributions()包含大约 10 个最常用分布的属性,并且可以为您进行拟合和检查。

它还具有许多其他功能,如绘制直方图,所有完整的文档可以在这里找到。

对于科学家、工程师以及一般人来说,这是一个被严重低估的模块。

解决方案 9:

对我来说这听起来像是概率密度估计问题。

from scipy.stats import gaussian_kde
occurences = [0,0,0,0,..,1,1,1,1,...,2,2,2,2,...,47]
values = range(0,48)
kde = gaussian_kde(map(float, occurences))
p = kde(values)
p = p/sum(p)
print "P(x>=1) = %f" % sum(p[1:])

另请参阅http://jpktd.blogspot.com/2009/03/using-gaussian-kernel-density.html

解决方案 10:

将数据存储在字典中怎么样?其中的键是 0 到 47 之间的数字,值是原始列表中相关键出现的次数。

因此,您的可能性 p(x) 将是所有大于 x 的键值的总和除以 30000。

解决方案 11:

使用OpenTURNS时,我会使用 BIC 标准来选择最适合此类数据的分布。这是因为该标准不会给具有更多参数的分布带来太大优势。事实上,如果分布具有更多参数,则拟合分布更容易接近数据。此外,在这种情况下,Kolmogorov-Smirnov 可能没有意义,因为测量值中的小误差会对 p 值产生巨大影响。

为了说明该过程,我加载了厄尔尼诺数据,其中包含 1950 年至 2010 年的 732 个月温度测量数据:

import statsmodels.api as sm
dta = sm.datasets.elnino.load_pandas().data
dta['YEAR'] = dta.YEAR.astype(int).astype(str)
dta = dta.set_index('YEAR').T.unstack()
data = dta.values

使用静态方法很容易获得 30 个内置的单变量分布工厂GetContinuousUniVariateFactories。完成后,BestModelBIC静态方法将返回最佳模型和相应的 BIC 分数。

sample = ot.Sample([[p] for p in data]) # data reshaping
tested_factories = ot.DistributionFactory.GetContinuousUniVariateFactories()
best_model, best_bic = ot.FittingTest.BestModelBIC(sample,
                                                   tested_factories)
print("Best=",best_model)

打印结果为:

Best= Beta(alpha = 1.64258, beta = 2.4348, a = 18.936, b = 29.254)

为了以图形方式比较与直方图的拟合度,我使用了drawPDF最佳分布的方法。

import openturns.viewer as otv
graph = ot.HistogramFactory().build(sample).drawPDF()
bestPDF = best_model.drawPDF()
bestPDF.setColors(["blue"])
graph.add(bestPDF)
graph.setTitle("Best BIC fit")
name = best_model.getImplementation().getClassName()
graph.setLegends(["Histogram",name])
graph.setXTitle("Temperature (°C)")
otv.View(graph)

得出的结果为:

厄尔尼诺气温的 Beta 拟合值

BestModelBIC文档中提供了有关此主题的更多详细信息。可以将 Scipy 分布包含在SciPyDistribution中,甚至可以将 ChaosPy 分布包含在ChaosPyDistribution中,但我想当前脚本可以满足大多数实际目的。

解决方案 12:

我从第一个答案重新设计了分布函数,其中包括一个选择参数,用于选择拟合优度检验之一,这将缩小适合数据的分布函数范围:

import numpy as np
import pandas as pd
import scipy.stats as st
import matplotlib.pyplot as plt
import pylab

def make_hist(data):
    #### General code:
    bins_formulas = ['auto', 'fd', 'scott', 'rice', 'sturges', 'doane', 'sqrt']
    bins = np.histogram_bin_edges(a=data, bins='fd', range=(min(data), max(data)))
    # print('Bin value = ', bins)

    # Obtaining the histogram of data:
    Hist, bin_edges = histogram(a=data, bins=bins, range=(min(data), max(data)), density=True)
    bin_mid = (bin_edges + np.roll(bin_edges, -1))[:-1] / 2.0  # go from bin edges to bin middles
    return Hist, bin_mid

def make_pdf(dist, params, size):
    """Generate distributions's Probability Distribution Function """

    # Separate parts of parameters
    arg = params[:-2]
    loc = params[-2]
    scale = params[-1]

    # Get sane start and end points of distribution
    start = dist.ppf(0.01, *arg, loc=loc, scale=scale) if arg else dist.ppf(0.01, loc=loc, scale=scale)
    end = dist.ppf(0.99, *arg, loc=loc, scale=scale) if arg else dist.ppf(0.99, loc=loc, scale=scale)

    # Build PDF and turn into pandas Series
    x = np.linspace(start, end, size)
    y = dist.pdf(x, loc=loc, scale=scale, *arg)
    pdf = pd.Series(y, x)
    return pdf, x, y

def compute_r2_test(y_true, y_predicted):
    sse = sum((y_true - y_predicted)**2)
    tse = (len(y_true) - 1) * np.var(y_true, ddof=1)
    r2_score = 1 - (sse / tse)
    return r2_score, sse, tse

def get_best_distribution_2(data, method, plot=False):
    dist_names = ['alpha', 'anglit', 'arcsine', 'beta', 'betaprime', 'bradford', 'burr', 'cauchy', 'chi', 'chi2', 'cosine', 'dgamma', 'dweibull', 'erlang', 'expon', 'exponweib', 'exponpow', 'f', 'fatiguelife', 'fisk', 'foldcauchy', 'foldnorm', 'frechet_r', 'frechet_l', 'genlogistic', 'genpareto', 'genexpon', 'genextreme', 'gausshyper', 'gamma', 'gengamma', 'genhalflogistic', 'gilbrat',  'gompertz', 'gumbel_r', 'gumbel_l', 'halfcauchy', 'halflogistic', 'halfnorm', 'hypsecant', 'invgamma', 'invgauss', 'invweibull', 'johnsonsb', 'johnsonsu', 'ksone', 'kstwobign', 'laplace', 'logistic', 'loggamma', 'loglaplace', 'lognorm', 'lomax', 'maxwell', 'mielke', 'moyal', 'nakagami', 'ncx2', 'ncf', 'nct', 'norm', 'pareto', 'pearson3', 'powerlaw', 'powerlognorm', 'powernorm', 'rdist', 'reciprocal', 'rayleigh', 'rice', 'recipinvgauss', 'semicircular', 't', 'triang', 'truncexpon', 'truncnorm', 'tukeylambda', 'uniform', 'vonmises', 'wald', 'weibull_min', 'weibull_max', 'wrapcauchy']
    
    # Applying the Goodness-to-fit tests to select the best distribution that fits the data:
    dist_results = []
    dist_IC_results = []
    params = {}
    params_IC = {}
    params_SSE = {}

    if method == 'sse':
########################################################################################################################
######################################## Sum of Square Error (SSE) test ################################################
########################################################################################################################
        # Best holders
        best_distribution = st.norm
        best_params = (0.0, 1.0)
        best_sse = np.inf

        for dist_name in dist_names:
            dist = getattr(st, dist_name)
            param = dist.fit(data)
            params[dist_name] = param
            N_len = len(list(data))
            # Obtaining the histogram:
            Hist_data, bin_data = make_hist(data=data)

            # fit dist to data
            params_dist = dist.fit(data)

            # Separate parts of parameters
            arg = params_dist[:-2]
            loc = params_dist[-2]
            scale = params_dist[-1]

            # Calculate fitted PDF and error with fit in distribution
            pdf = dist.pdf(bin_data, loc=loc, scale=scale, *arg)
            sse = np.sum(np.power(Hist_data - pdf, 2.0))

            # identify if this distribution is better
            if best_sse > sse > 0:
                best_distribution = dist
                best_params = params_dist
                best_stat_test_val = sse

        print('
################################ Sum of Square Error test parameters #####################################')
        best_dist = best_distribution
        print("Best fitting distribution (SSE test) :" + str(best_dist))
        print("Best SSE value (SSE test) :" + str(best_stat_test_val))
        print("Parameters for the best fit (SSE test) :" + str(params[best_dist]))
        print('###########################################################################################################
')

########################################################################################################################
########################################################################################################################
########################################################################################################################

    if method == 'r2':
########################################################################################################################
##################################################### R Square (R^2) test ##############################################
########################################################################################################################
    # Best holders
    best_distribution = st.norm
    best_params = (0.0, 1.0)
    best_r2 = np.inf

    for dist_name in dist_names:
        dist = getattr(st, dist_name)
        param = dist.fit(data)
        params[dist_name] = param
        N_len = len(list(data))
        # Obtaining the histogram:
        Hist_data, bin_data = make_hist(data=data)

        # fit dist to data
        params_dist = dist.fit(data)

        # Separate parts of parameters
        arg = params_dist[:-2]
        loc = params_dist[-2]
        scale = params_dist[-1]

        # Calculate fitted PDF and error with fit in distribution
        pdf = dist.pdf(bin_data, loc=loc, scale=scale, *arg)
        r2 = compute_r2_test(y_true=Hist_data, y_predicted=pdf)

        # identify if this distribution is better
        if best_r2 > r2 > 0:
            best_distribution = dist
            best_params = params_dist
            best_stat_test_val = r2

    print('
############################## R Square test parameters ###########################################')
    best_dist = best_distribution
    print("Best fitting distribution (R^2 test) :" + str(best_dist))
    print("Best R^2 value (R^2 test) :" + str(best_stat_test_val))
    print("Parameters for the best fit (R^2 test) :" + str(params[best_dist]))
    print('#####################################################################################################
')

########################################################################################################################
########################################################################################################################
########################################################################################################################

    if method == 'ic':
########################################################################################################################
######################################## Information Criteria (IC) test ################################################
########################################################################################################################
        for dist_name in dist_names:
            dist = getattr(st, dist_name)
            param = dist.fit(data)
            params[dist_name] = param
            N_len = len(list(data))

            # Obtaining the histogram:
            Hist_data, bin_data = make_hist(data=data)

            # fit dist to data
            params_dist = dist.fit(data)

            # Separate parts of parameters
            arg = params_dist[:-2]
            loc = params_dist[-2]
            scale = params_dist[-1]

            # Calculate fitted PDF and error with fit in distribution
            pdf = dist.pdf(bin_data, loc=loc, scale=scale, *arg)
            sse = np.sum(np.power(Hist_data - pdf, 2.0))

            # Obtaining the log of the pdf:
            loglik = np.sum(dist.logpdf(bin_data, *params_dist))
            k = len(params_dist[:])
            n = len(data)
            aic = 2 * k - 2 * loglik
            bic = n * np.log(sse / n) + k * np.log(n)
            dist_IC_results.append((dist_name, aic))
            # dist_IC_results.append((dist_name, bic))

        # select the best fitted distribution and store the name of the best fit and its IC value
        best_dist, best_ic = (min(dist_IC_results, key=lambda item: item[1]))

        print('
############################ Information Criteria (IC) test parameters ##################################')
        print("Best fitting distribution (IC test) :" + str(best_dist))
        print("Best IC value (IC test) :" + str(best_ic))
        print("Parameters for the best fit (IC test) :" + str(params[best_dist]))
        print('###########################################################################################################
')

########################################################################################################################
########################################################################################################################
########################################################################################################################

    if method == 'chi':
########################################################################################################################
################################################ Chi-Square (Chi^2) test ###############################################
########################################################################################################################
        # Set up 50 bins for chi-square test
        # Observed data will be approximately evenly distrubuted aross all bins
        percentile_bins = np.linspace(0,100,51)
        percentile_cutoffs = np.percentile(data, percentile_bins)
        observed_frequency, bins = (np.histogram(data, bins=percentile_cutoffs))
        cum_observed_frequency = np.cumsum(observed_frequency)

        chi_square = []
        for dist_name in dist_names:
            dist = getattr(st, dist_name)
            param = dist.fit(data)
            params[dist_name] = param

            # Obtaining the histogram:
            Hist_data, bin_data = make_hist(data=data)

            # fit dist to data
            params_dist = dist.fit(data)

            # Separate parts of parameters
            arg = params_dist[:-2]
            loc = params_dist[-2]
            scale = params_dist[-1]

            # Calculate fitted PDF and error with fit in distribution
            pdf = dist.pdf(bin_data, loc=loc, scale=scale, *arg)

            # Get expected counts in percentile bins
            # This is based on a 'cumulative distrubution function' (cdf)
            cdf_fitted = dist.cdf(percentile_cutoffs, *arg, loc=loc, scale=scale)
            expected_frequency = []
            for bin in range(len(percentile_bins) - 1):
                expected_cdf_area = cdf_fitted[bin + 1] - cdf_fitted[bin]
                expected_frequency.append(expected_cdf_area)

            # calculate chi-squared
            expected_frequency = np.array(expected_frequency) * size
            cum_expected_frequency = np.cumsum(expected_frequency)
            ss = sum(((cum_expected_frequency - cum_observed_frequency) ** 2) / cum_observed_frequency)
            chi_square.append(ss)

            # Applying the Chi-Square test:
            # D, p = scipy.stats.chisquare(f_obs=pdf, f_exp=Hist_data)
            # print("Chi-Square test Statistics value for " + dist_name + " = " + str(D))
            print("p value for " + dist_name + " = " + str(chi_square))
            dist_results.append((dist_name, chi_square))

        # select the best fitted distribution and store the name of the best fit and its p value
        best_dist, best_stat_test_val = (min(dist_results, key=lambda item: item[1]))

        print('
#################################### Chi-Square test parameters #######################################')
        print("Best fitting distribution (Chi^2 test) :" + str(best_dist))
        print("Best p value (Chi^2 test) :" + str(best_stat_test_val))
        print("Parameters for the best fit (Chi^2 test) :" + str(params[best_dist]))
        print('#########################################################################################################
')

########################################################################################################################
########################################################################################################################
########################################################################################################################

    if method == 'ks':
########################################################################################################################
########################################## Kolmogorov-Smirnov (KS) test ################################################
########################################################################################################################
        for dist_name in dist_names:
            dist = getattr(st, dist_name)
            param = dist.fit(data)
            params[dist_name] = param

            # Applying the Kolmogorov-Smirnov test:
            D, p = st.kstest(data, dist_name, args=param)
            # D, p = st.kstest(data, dist_name, args=param, N=N_len, alternative='greater')
            # print("Kolmogorov-Smirnov test Statistics value for " + dist_name + " = " + str(D))
            print("p value for " + dist_name + " = " + str(p))
            dist_results.append((dist_name, p))

        # select the best fitted distribution and store the name of the best fit and its p value
        best_dist, best_stat_test_val = (max(dist_results, key=lambda item: item[1]))

        print('
################################ Kolmogorov-Smirnov test parameters #####################################')
        print("Best fitting distribution (KS test) :" + str(best_dist))
        print("Best p value (KS test) :" + str(best_stat_test_val))
        print("Parameters for the best fit (KS test) :" + str(params[best_dist]))
        print('###########################################################################################################
')

########################################################################################################################
########################################################################################################################
########################################################################################################################

    # Collate results and sort by goodness of fit (best at top)
    results = pd.DataFrame()
    results['Distribution'] = dist_names
    results['chi_square'] = chi_square
    # results['p_value'] = p_values
    results.sort_values(['chi_square'], inplace=True)

    # Plotting the distribution with histogram:
    if plot:
        bins_val = np.histogram_bin_edges(a=data, bins='fd', range=(min(data), max(data)))
        plt.hist(x=data, bins=bins_val, range=(min(data), max(data)), density=True)
        # pylab.hist(x=data, bins=bins_val, range=(min(data), max(data)))
        best_param = params[best_dist]
        best_dist_p = getattr(st, best_dist)
        pdf, x_axis_pdf, y_axis_pdf = make_pdf(dist=best_dist_p, params=best_param, size=len(data))
        plt.plot(x_axis_pdf, y_axis_pdf, color='red', label='Best dist ={0}'.format(best_dist))
        plt.legend()
        plt.title('Histogram and Distribution plot of data')
        # plt.show()
        plt.show(block=False)
        plt.pause(5)  # Pauses the program for 5 seconds
        plt.close('all')

    return best_dist, best_stat_test_val, params[best_dist]

然后继续 make_pdf 函数根据拟合优度检验获取所选分布。

解决方案 13:

根据Timothy Davenports 的回答,我重构了代码以用作库,并将其作为 github 和 pypi 项目提供,请参阅:

一个目标是使密度选项可用并将结果输出为文件。请参阅实现的主要部分:

    bfd=BestFitDistribution(data)
    for density in [True,False]:
        suffix="density" if density else ""
        bfd.analyze(title=u'El Niño sea temp.',x_label=u'Temp (°C)',y_label='Frequency',outputFilePrefix=f"/tmp/ElNinoPDF{suffix}",density=density)
    # uncomment for interactive display
    # plt.show()

全部
最佳拟合

该库还有一个单元测试,例如
正态分布测试

def testNormal(self):
        '''
        test the normal distribution
        '''
        # use euler constant as seed
        np.random.seed(0)
        # statistically relevant number of datapoints
        datapoints=1000
        a = np.random.normal(40, 10, datapoints)
        df= pd.DataFrame({'nums':a})
        outputFilePrefix="/tmp/normalDist"
        bfd=BestFitDistribution(df,debug=True)
        bfd.analyze(title="normal distribution",x_label="x",y_label="random",outputFilePrefix=outputFilePrefix)

全部正常
正常最佳拟合如果您发现问题或有改进空间,
请将问题添加到项目中。讨论也已启用。

下面的代码可能不是最新的,请使用 pypi 或 github 存储库获取最新版本。

'''
Created on 2022-05-17

see 
  https://stackoverflow.com/questions/6620471/fitting-empirical-distribution-to-theoretical-ones-with-scipy-python/37616966#37616966

@author: https://stackoverflow.com/users/832621/saullo-g-p-castro
see https://stackoverflow.com/a/37616966/1497139

@author: https://stackoverflow.com/users/2087463/tmthydvnprt
see  https://stackoverflow.com/a/37616966/1497139

@author: https://stackoverflow.com/users/1497139/wolfgang-fahl
see 

'''
import traceback
import sys
import warnings

import numpy as np
import pandas as pd
import scipy.stats as st

from scipy.stats._continuous_distns import _distn_names

import statsmodels.api as sm

import matplotlib
import matplotlib.pyplot as plt

class BestFitDistribution():
    '''
    Find the best Probability Distribution Function for the given data
    '''
    
    def __init__(self,data,distributionNames:list=None,debug:bool=False):
        '''
        constructor
        
        Args:
            data(dataFrame): the data to analyze
            distributionNames(list): list of distributionNames to try
            debug(bool): if True show debugging information
        '''
        self.debug=debug
        self.matplotLibParams()
        if distributionNames is None:
            self.distributionNames=[d for d in _distn_names if not d in ['levy_stable', 'studentized_range']]
        else:
            self.distributionNames=distributionNames
        self.data=data
        
    def matplotLibParams(self):
        '''
        set matplotlib parameters
        '''
        matplotlib.rcParams['figure.figsize'] = (16.0, 12.0)
        #matplotlib.style.use('ggplot')
        matplotlib.use("WebAgg")

    # Create models from data
    def best_fit_distribution(self,bins:int=200, ax=None,density:bool=True):
        """
        Model data by finding best fit distribution to data
        """
        # Get histogram of original data
        y, x = np.histogram(self.data, bins=bins, density=density)
        x = (x + np.roll(x, -1))[:-1] / 2.0
    
        # Best holders
        best_distributions = []
        distributionCount=len(self.distributionNames)
        # Estimate distribution parameters from data
        for ii, distributionName in enumerate(self.distributionNames):
    
            print(f"{ii+1:>3} / {distributionCount:<3}: {distributionName}")
    
            distribution = getattr(st, distributionName)
    
            # Try to fit the distribution
            try:
                # Ignore warnings from data that can't be fit
                with warnings.catch_warnings():
                    warnings.filterwarnings('ignore')
                    
                    # fit dist to data
                    params = distribution.fit(self.data)
    
                    # Separate parts of parameters
                    arg = params[:-2]
                    loc = params[-2]
                    scale = params[-1]
                    
                    # Calculate fitted PDF and error with fit in distribution
                    pdf = distribution.pdf(x, loc=loc, scale=scale, *arg)
                    sse = np.sum(np.power(y - pdf, 2.0))
                    
                    # if axis pass in add to plot
                    try:
                        if ax:
                            pd.Series(pdf, x).plot(ax=ax)
                    except Exception:
                        pass
    
                    # identify if this distribution is better
                    best_distributions.append((distribution, params, sse))
            
            except Exception as ex:
                if self.debug:
                    trace=traceback.format_exc()
                    msg=f"fit for {distributionName} failed:{ex}
{trace}"
                    print(msg,file=sys.stderr)
                pass
        
        return sorted(best_distributions, key=lambda x:x[2])

    def make_pdf(self,dist, params:list, size=10000):
        """
        Generate distributions's Probability Distribution Function 
        
        Args:
            dist: Distribution
            params(list): parameter
            size(int): size
            
        Returns:
            dataframe: Power Distribution Function 
        
        """
    
        # Separate parts of parameters
        arg = params[:-2]
        loc = params[-2]
        scale = params[-1]
    
        # Get sane start and end points of distribution
        start = dist.ppf(0.01, *arg, loc=loc, scale=scale) if arg else dist.ppf(0.01, loc=loc, scale=scale)
        end   = dist.ppf(0.99, *arg, loc=loc, scale=scale) if arg else dist.ppf(0.99, loc=loc, scale=scale)
    
        # Build PDF and turn into pandas Series
        x = np.linspace(start, end, size)
        y = dist.pdf(x, loc=loc, scale=scale, *arg)
        pdf = pd.Series(y, x)
    
        return pdf
    
    def analyze(self,title,x_label,y_label,outputFilePrefix=None,imageFormat:str='png',allBins:int=50,distBins:int=200,density:bool=True):
        """
        
        analyze the Probabilty Distribution Function
        
        Args:
            data: Panda Dataframe or numpy array
            title(str): the title to use
            x_label(str): the label for the x-axis
            y_label(str): the label for the y-axis
            outputFilePrefix(str): the prefix of the outputFile
            imageFormat(str): imageFormat e.g. png,svg
            allBins(int): the number of bins for all
            distBins(int): the number of bins for the distribution
            density(bool): if True show relative density
        """
        self.allBins=allBins
        self.distBins=distBins
        self.density=density
        self.title=title
        self.x_label=x_label
        self.y_label=y_label
        self.imageFormat=imageFormat
        self.outputFilePrefix=outputFilePrefix
        self.color=list(matplotlib.rcParams['axes.prop_cycle'])[1]['color']
        self.best_dist=None
        self.analyzeAll()
        if outputFilePrefix is not None:
            self.saveFig(f"{outputFilePrefix}All.{imageFormat}", imageFormat)
            plt.close(self.figAll)
        if self.best_dist:
            self.analyzeBest()
            if outputFilePrefix is not None:
                self.saveFig(f"{outputFilePrefix}Best.{imageFormat}", imageFormat)
                plt.close(self.figBest)
            
    def analyzeAll(self):
        '''
        analyze the given data
        
        '''
        # Plot for comparison
        figTitle=f"{self.title}
 All Fitted Distributions"
        self.figAll=plt.figure(figTitle,figsize=(12,8))
        ax = self.data.plot(kind='hist', bins=self.allBins, density=self.density, alpha=0.5, color=self.color)
        
        # Save plot limits
        dataYLim = ax.get_ylim()
        # Update plots
        ax.set_ylim(dataYLim)
        ax.set_title(figTitle)
        ax.set_xlabel(self.x_label)
        ax.set_ylabel(self.y_label)
        
        # Find best fit distribution
        best_distributions = self.best_fit_distribution(bins=self.distBins, ax=ax,density=self.density)
        if len(best_distributions)>0:
            self.best_dist = best_distributions[0]
            # Make PDF with best params 
            self.pdf = self.make_pdf(self.best_dist[0], self.best_dist[1])
        
    def analyzeBest(self):
        '''
        analyze the Best Property Distribution function
        '''
        # Display
        figLabel="PDF"
        self.figBest=plt.figure(figLabel,figsize=(12,8))
        ax = self.pdf.plot(lw=2, label=figLabel, legend=True)
        self.data.plot(kind='hist', bins=self.allBins, density=self.density, alpha=0.5, label='Data', legend=True, ax=ax,color=self.color)
        
        param_names = (self.best_dist[0].shapes + ', loc, scale').split(', ') if self.best_dist[0].shapes else ['loc', 'scale']
        param_str = ', '.join(['{}={:0.2f}'.format(k,v) for k,v in zip(param_names, self.best_dist[1])])
        dist_str = '{}({})'.format(self.best_dist[0].name, param_str)
        
        ax.set_title(f'{self.title} with best fit distribution 
' + dist_str)
        ax.set_xlabel(self.x_label)
        ax.set_ylabel(self.y_label)

    def saveFig(self,outputFile:str=None,imageFormat='png'):
        '''
        save the current Figure to the given outputFile
        
        Args:
            outputFile(str): the outputFile to save to
            imageFormat(str): the imageFormat to use e.g. png/svg
        '''
        plt.savefig(outputFile, format=imageFormat) # dpi 
     

if __name__ == '__main__':
    # Load data from statsmodels datasets
    data = pd.Series(sm.datasets.elnino.load_pandas().data.set_index('YEAR').values.ravel())
    
    bfd=BestFitDistribution(data)
    for density in [True,False]:
        suffix="density" if density else ""
        bfd.analyze(title=u'El Niño sea temp.',x_label=u'Temp (°C)',y_label='Frequency',outputFilePrefix=f"/tmp/ElNinoPDF{suffix}",density=density)
    # uncomment for interactive display
    # plt.show()


相关推荐
  政府信创国产化的10大政策解读一、信创国产化的背景与意义信创国产化,即信息技术应用创新国产化,是当前中国信息技术领域的一个重要发展方向。其核心在于通过自主研发和创新,实现信息技术应用的自主可控,减少对外部技术的依赖,并规避潜在的技术制裁和风险。随着全球信息技术竞争的加剧,以及某些国家对中国在科技领域的打压,信创国产化显...
工程项目管理   1565  
  为什么项目管理通常仍然耗时且低效?您是否还在反复更新电子表格、淹没在便利贴中并参加每周更新会议?这确实是耗费时间和精力。借助软件工具的帮助,您可以一目了然地全面了解您的项目。如今,国内外有足够多优秀的项目管理软件可以帮助您掌控每个项目。什么是项目管理软件?项目管理软件是广泛行业用于项目规划、资源分配和调度的软件。它使项...
项目管理软件   1354  
  信创国产芯片作为信息技术创新的核心领域,对于推动国家自主可控生态建设具有至关重要的意义。在全球科技竞争日益激烈的背景下,实现信息技术的自主可控,摆脱对国外技术的依赖,已成为保障国家信息安全和产业可持续发展的关键。国产芯片作为信创产业的基石,其发展水平直接影响着整个信创生态的构建与完善。通过不断提升国产芯片的技术实力、产...
国产信创系统   21  
  信创生态建设旨在实现信息技术领域的自主创新和安全可控,涵盖了从硬件到软件的全产业链。随着数字化转型的加速,信创生态建设的重要性日益凸显,它不仅关乎国家的信息安全,更是推动产业升级和经济高质量发展的关键力量。然而,在推进信创生态建设的过程中,面临着诸多复杂且严峻的挑战,需要深入剖析并寻找切实可行的解决方案。技术创新难题技...
信创操作系统   27  
  信创产业作为国家信息技术创新发展的重要领域,对于保障国家信息安全、推动产业升级具有关键意义。而国产芯片作为信创产业的核心基石,其研发进展备受关注。在信创国产芯片的研发征程中,面临着诸多复杂且艰巨的难点,这些难点犹如一道道关卡,阻碍着国产芯片的快速发展。然而,科研人员和相关企业并未退缩,积极探索并提出了一系列切实可行的解...
国产化替代产品目录   28  
热门文章
项目管理软件有哪些?
云禅道AD
禅道项目管理软件

云端的项目管理软件

尊享禅道项目软件收费版功能

无需维护,随时随地协同办公

内置subversion和git源码管理

每天备份,随时转为私有部署

免费试用