OpenCV-Python 中的简单数字识别 OCR
- 2024-12-31 08:37:00
- admin 原创
- 159
问题描述:
我正在尝试在 OpenCV-Python (cv2) 中实现“数字识别 OCR”。这只是为了学习目的。我想学习 OpenCV 中的 KNearest 和 SVM 功能。
我有每个数字的 100 个样本(即图像)。我想用它们进行训练。
OpenCV 示例附带了一个示例letter_recog.py
。但我仍然不知道如何使用它。我不明白什么是示例、响应等。此外,它首先加载一个 txt 文件,我一开始不明白。
后来搜索了一下,我在 cpp 示例中找到了 letter_recognition.data。我用它为 letter_recog.py 模型中的 cv2.KNearest 编写了代码(仅用于测试):
import numpy as np
import cv2
fn = 'letter-recognition.data'
a = np.loadtxt(fn, np.float32, delimiter=',', converters={ 0 : lambda ch : ord(ch)-ord('A') })
samples, responses = a[:,1:], a[:,0]
model = cv2.KNearest()
retval = model.train(samples,responses)
retval, results, neigh_resp, dists = model.find_nearest(samples, k = 10)
print results.ravel()
它给了我一个大小为 20000 的数组,我不明白它是什么。
问题:
1) 什么是 letter_recognition.data 文件?如何从我自己的数据集构建该文件?
2) 表示什么results.reval()
?
3)如何使用 letter_recognition.data 文件(KNearest 或 SVM)编写一个简单的数字识别工具?
解决方案 1:
好吧,我决定自己研究一下这个问题,以解决上述问题。我想要的是使用 OpenCV 中的 KNearest 或 SVM 功能实现一个简单的 OCR。下面是我所做的以及如何做的。(这只是为了学习如何使用 KNearest 进行简单的 OCR 目的)。
1)我的第一个问题是关于letter_recognition.data
OpenCV 示例附带的文件。我想知道该文件里面有什么。
它包含一个字母,以及该字母的 16 个特征。
并this SOF
帮助我找到了它。论文中解释了这 16 个特性Letter Recognition Using Holland-Style Adaptive Classifiers
。(虽然最后有些特性我没看懂)
2)因为我知道,如果不了解所有这些特性,那么这种方法很难做到。我尝试了一些其他论文,但对于初学者来说,这些论文都有点难。
所以我决定将所有像素值作为我的特征。(我并不担心准确性或性能,我只是希望它能工作,至少以最低的准确性工作)
我拍摄了下面的图片作为我的训练数据:
(我知道训练数据量较少。但是,由于所有字母的字体和大小都相同,所以我决定尝试一下)。
为了准备训练数据,我在 OpenCV 中编写了一个小代码。它执行以下操作:
它加载图像。
选择数字(显然通过轮廓查找并对字母的面积和高度施加约束以避免错误检测)。
围绕一个字母绘制边界矩形并等待
key press manually
。这次我们自己按下与框中的字母相对应的数字键。一旦按下相应的数字键,它会将此框的大小调整为 10x10,并将所有 100 个像素值保存在一个数组中(此处为样本),并将相应的手动输入的数字保存在另一个数组中(此处为响应)。
然后将两个数组保存在单独的
.txt
文件中。
在数字手动分类的最后,训练数据(train.png
)中的所有数字都是我们自己手动标记的,图像将如下所示:
下面是我为上述目的使用的代码(当然,不是那么干净):
import sys
import numpy as np
import cv2
im = cv2.imread('pitrain.png')
im3 = im.copy()
gray = cv2.cvtColor(im,cv2.COLOR_BGR2GRAY)
blur = cv2.GaussianBlur(gray,(5,5),0)
thresh = cv2.adaptiveThreshold(blur,255,1,1,11,2)
################# Now finding Contours ###################
contours,hierarchy = cv2.findContours(thresh,cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE)
samples = np.empty((0,100))
responses = []
keys = [i for i in range(48,58)]
for cnt in contours:
if cv2.contourArea(cnt)>50:
[x,y,w,h] = cv2.boundingRect(cnt)
if h>28:
cv2.rectangle(im,(x,y),(x+w,y+h),(0,0,255),2)
roi = thresh[y:y+h,x:x+w]
roismall = cv2.resize(roi,(10,10))
cv2.imshow('norm',im)
key = cv2.waitKey(0)
if key == 27: # (escape to quit)
sys.exit()
elif key in keys:
responses.append(int(chr(key)))
sample = roismall.reshape((1,100))
samples = np.append(samples,sample,0)
responses = np.array(responses,np.float32)
responses = responses.reshape((responses.size,1))
print "training complete"
np.savetxt('generalsamples.data',samples)
np.savetxt('generalresponses.data',responses)
现在我们进入训练和测试部分。
对于测试部分,我使用了下面的图像,其中的字母类型与我在训练阶段使用的相同。
对于训练我们做如下事情:
加载
.txt
我们之前保存的文件创建我们正在使用的分类器的一个实例(在本例中是 KNearest)
然后我们使用 KNearest.train 函数来训练数据
为了测试目的,我们执行以下操作:
我们加载用于测试的图像
像之前一样处理图像并使用轮廓方法提取每个数字
为其绘制一个边界框,然后将其大小调整为 10x10,并将其像素值存储在数组中,如之前所做的那样。
然后我们使用 KNearest.find_nearest() 函数来查找与我们提供的数字最接近的项目。(如果幸运的话,它会识别出正确的数字。)
我在下面的单个代码中包含了最后两个步骤(训练和测试):
import cv2
import numpy as np
####### training part ###############
samples = np.loadtxt('generalsamples.data',np.float32)
responses = np.loadtxt('generalresponses.data',np.float32)
responses = responses.reshape((responses.size,1))
model = cv2.KNearest()
model.train(samples,responses)
############################# testing part #########################
im = cv2.imread('pi.png')
out = np.zeros(im.shape,np.uint8)
gray = cv2.cvtColor(im,cv2.COLOR_BGR2GRAY)
thresh = cv2.adaptiveThreshold(gray,255,1,1,11,2)
contours,hierarchy = cv2.findContours(thresh,cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE)
for cnt in contours:
if cv2.contourArea(cnt)>50:
[x,y,w,h] = cv2.boundingRect(cnt)
if h>28:
cv2.rectangle(im,(x,y),(x+w,y+h),(0,255,0),2)
roi = thresh[y:y+h,x:x+w]
roismall = cv2.resize(roi,(10,10))
roismall = roismall.reshape((1,100))
roismall = np.float32(roismall)
retval, results, neigh_resp, dists = model.find_nearest(roismall, k = 1)
string = str(int((results[0][0])))
cv2.putText(out,string,(x,y+h),0,1,(0,255,0))
cv2.imshow('im',im)
cv2.imshow('out',out)
cv2.waitKey(0)
它确实起作用了,下面是我得到的结果:
在这里,它的准确率是 100%。我认为这是因为所有数字都是同一类型和相同大小。
但无论如何,这对于初学者来说是一个好的开始(我希望如此)。
解决方案 2:
对于那些对 C++ 代码感兴趣的人,可以参考下面的代码。感谢Abid Rahman 的精彩解释。
该过程与上述相同,但是轮廓查找仅使用第一层次的轮廓,因此算法仅使用每个数字的外轮廓。
创建样本和标签数据的代码
//Process image to extract contour
Mat thr,gray,con;
Mat src=imread("digit.png",1);
cvtColor(src,gray,CV_BGR2GRAY);
threshold(gray,thr,200,255,THRESH_BINARY_INV); //Threshold to find contour
thr.copyTo(con);
// Create sample and label data
vector< vector <Point> > contours; // Vector for storing contour
vector< Vec4i > hierarchy;
Mat sample;
Mat response_array;
findContours( con, contours, hierarchy,CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE ); //Find contour
for( int i = 0; i< contours.size(); i=hierarchy[i][0] ) // iterate through first hierarchy level contours
{
Rect r= boundingRect(contours[i]); //Find bounding rect for each contour
rectangle(src,Point(r.x,r.y), Point(r.x+r.width,r.y+r.height), Scalar(0,0,255),2,8,0);
Mat ROI = thr(r); //Crop the image
Mat tmp1, tmp2;
resize(ROI,tmp1, Size(10,10), 0,0,INTER_LINEAR ); //resize to 10X10
tmp1.convertTo(tmp2,CV_32FC1); //convert to float
sample.push_back(tmp2.reshape(1,1)); // Store sample data
imshow("src",src);
int c=waitKey(0); // Read corresponding label for contour from keyoard
c-=0x30; // Convert ascii to intiger value
response_array.push_back(c); // Store label to a mat
rectangle(src,Point(r.x,r.y), Point(r.x+r.width,r.y+r.height), Scalar(0,255,0),2,8,0);
}
// Store the data to file
Mat response,tmp;
tmp=response_array.reshape(1,1); //make continuous
tmp.convertTo(response,CV_32FC1); // Convert to float
FileStorage Data("TrainingData.yml",FileStorage::WRITE); // Store the sample data in a file
Data << "data" << sample;
Data.release();
FileStorage Label("LabelData.yml",FileStorage::WRITE); // Store the label data in a file
Label << "label" << response;
Label.release();
cout<<"Training and Label data created successfully....!! "<<endl;
imshow("src",src);
waitKey();
训练和测试代码
Mat thr,gray,con;
Mat src=imread("dig.png",1);
cvtColor(src,gray,CV_BGR2GRAY);
threshold(gray,thr,200,255,THRESH_BINARY_INV); // Threshold to create input
thr.copyTo(con);
// Read stored sample and label for training
Mat sample;
Mat response,tmp;
FileStorage Data("TrainingData.yml",FileStorage::READ); // Read traing data to a Mat
Data["data"] >> sample;
Data.release();
FileStorage Label("LabelData.yml",FileStorage::READ); // Read label data to a Mat
Label["label"] >> response;
Label.release();
KNearest knn;
knn.train(sample,response); // Train with sample and responses
cout<<"Training compleated.....!!"<<endl;
vector< vector <Point> > contours; // Vector for storing contour
vector< Vec4i > hierarchy;
//Create input sample by contour finding and cropping
findContours( con, contours, hierarchy,CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE );
Mat dst(src.rows,src.cols,CV_8UC3,Scalar::all(0));
for( int i = 0; i< contours.size(); i=hierarchy[i][0] ) // iterate through each contour for first hierarchy level .
{
Rect r= boundingRect(contours[i]);
Mat ROI = thr(r);
Mat tmp1, tmp2;
resize(ROI,tmp1, Size(10,10), 0,0,INTER_LINEAR );
tmp1.convertTo(tmp2,CV_32FC1);
float p=knn.find_nearest(tmp2.reshape(1,1), 1);
char name[4];
sprintf(name,"%d",(int)p);
putText( dst,name,Point(r.x,r.y+r.height) ,0,1, Scalar(0, 255, 0), 2, 8 );
}
imshow("src",src);
imshow("dst",dst);
imwrite("dest.jpg",dst);
waitKey();
结果
结果中,第一行的点被检测为 8,而我们尚未针对点进行训练。此外,我将第一层级中的每个轮廓视为样本输入,用户可以通过计算面积来避免这种情况。
解决方案 3:
我在生成训练数据时遇到了一些问题,因为有时很难识别最后选择的字母,所以我将图像旋转了 1.5 度。现在每个字符都按顺序选择,训练后测试仍然显示 100% 的准确率。以下是代码:
import numpy as np
import cv2
def rotate_image(image, angle):
image_center = tuple(np.array(image.shape[1::-1]) / 2)
rot_mat = cv2.getRotationMatrix2D(image_center, angle, 1.0)
result = cv2.warpAffine(image, rot_mat, image.shape[1::-1], flags=cv2.INTER_LINEAR)
return result
img = cv2.imread('training_image.png')
cv2.imshow('orig image', img)
whiteBorder = [255,255,255]
# extend the image border
image1 = cv2.copyMakeBorder(img, 80, 80, 80, 80, cv2.BORDER_CONSTANT, None, whiteBorder)
# rotate the image 1.5 degrees clockwise for ease of data entry
image_rot = rotate_image(image1, -1.5)
#crop_img = image_rot[y:y+h, x:x+w]
cropped = image_rot[70:350, 70:710]
cv2.imwrite('rotated.png', cropped)
cv2.imshow('rotated image', cropped)
cv2.waitKey(0)
对于示例数据,我对脚本做了一些更改,如下所示:
import sys
import numpy as np
import cv2
def sort_contours(contours, x_axis_sort='LEFT_TO_RIGHT', y_axis_sort='TOP_TO_BOTTOM'):
# initialize the reverse flag
x_reverse = False
y_reverse = False
if x_axis_sort == 'RIGHT_TO_LEFT':
x_reverse = True
if y_axis_sort == 'BOTTOM_TO_TOP':
y_reverse = True
boundingBoxes = [cv2.boundingRect(c) for c in contours]
# sorting on x-axis
sortedByX = zip(*sorted(zip(contours, boundingBoxes),
key=lambda b:b[1][0], reverse=x_reverse))
# sorting on y-axis
(contours, boundingBoxes) = zip(*sorted(zip(*sortedByX),
key=lambda b:b[1][1], reverse=y_reverse))
# return the list of sorted contours and bounding boxes
return (contours, boundingBoxes)
im = cv2.imread('rotated.png')
im3 = im.copy()
gray = cv2.cvtColor(im,cv2.COLOR_BGR2GRAY)
blur = cv2.GaussianBlur(gray,(5,5),0)
thresh = cv2.adaptiveThreshold(blur,255,1,1,11,2)
contours,hierarchy = cv2.findContours(thresh,cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE)
contours, boundingBoxes = sort_contours(contours, x_axis_sort='LEFT_TO_RIGHT', y_axis_sort='TOP_TO_BOTTOM')
samples = np.empty((0,100))
responses = []
keys = [i for i in range(48,58)]
for cnt in contours:
if cv2.contourArea(cnt)>50:
[x,y,w,h] = cv2.boundingRect(cnt)
if h>28 and h < 40:
cv2.rectangle(im,(x,y),(x+w,y+h),(0,0,255),2)
roi = thresh[y:y+h,x:x+w]
roismall = cv2.resize(roi,(10,10))
cv2.imshow('norm',im)
key = cv2.waitKey(0)
if key == 27: # (escape to quit)
sys.exit()
elif key in keys:
responses.append(int(chr(key)))
sample = roismall.reshape((1,100))
samples = np.append(samples,sample,0)
responses = np.array(responses,np.ubyte)
responses = responses.reshape((responses.size,1))
print("training complete")
np.savetxt('generalsamples.data',samples,fmt='%i')
np.savetxt('generalresponses.data',responses,fmt='%i')