根据纬度/经度获取两点之间的距离
- 2025-01-06 08:32:00
- admin 原创
- 88
问题描述:
我尝试在基于纬度和经度查找距离中实现公式。 该小程序对我测试的两点非常有用:
但我的代码不起作用。
from math import sin, cos, sqrt, atan2
R = 6373.0
lat1 = 52.2296756
lon1 = 21.0122287
lat2 = 52.406374
lon2 = 16.9251681
dlon = lon2 - lon1
dlat = lat2 - lat1
a = (sin(dlat/2))**2 + cos(lat1) * cos(lat2) * (sin(dlon/2))**2
c = 2 * atan2(sqrt(a), sqrt(1-a))
distance = R * c
print "Result", distance
print "Should be", 278.546
它返回距离5447.05546147。为什么?
解决方案 1:
自 GeoPy 版本 1.13 起, Vincenty 距离已被弃用-您应该改用geopy.distance.distance()
它!
之前的一些答案是基于半正矢公式的,该公式假设地球是一个球体,这会导致高达约 0.5% 的误差(根据help(geopy.distance)
)。Vincenty距离使用更精确的椭圆体模型,例如WGS-84 ,并在geopy中实现。例如,
import geopy.distance
coords_1 = (52.2296756, 21.0122287)
coords_2 = (52.406374, 16.9251681)
print(geopy.distance.geodesic(coords_1, coords_2).km)
279.352901604
将使用默认的椭球 WGS-84打印公里距离。(您也可以选择.miles
或其他几种距离单位之一。)
解决方案 2:
值得注意的是,如果您只是需要一种快速简便的方法来找到两点之间的距离,我强烈建议您使用下面Kurt 的回答中描述的方法,而不是重新实现 Haversine——请参阅他的帖子了解基本原理。
这个答案仅侧重于回答 OP 遇到的特定错误。
这是因为在 Python 中,所有三角函数都使用弧度,而不是角度。
您可以手动将数字转换为弧度,或者使用数学radians
模块中的函数:
from math import sin, cos, sqrt, atan2, radians
# Approximate radius of earth in km
R = 6373.0
lat1 = radians(52.2296756)
lon1 = radians(21.0122287)
lat2 = radians(52.406374)
lon2 = radians(16.9251681)
dlon = lon2 - lon1
dlat = lat2 - lat1
a = sin(dlat / 2)**2 + cos(lat1) * cos(lat2) * sin(dlon / 2)**2
c = 2 * atan2(sqrt(a), sqrt(1 - a))
distance = R * c
print("Result: ", distance)
print("Should be: ", 278.546, "km")
距离现在返回正确的值278.545589351公里。
解决方案 3:
对于通过搜索引擎来到这里,并且只是在寻找一个开箱即用的解决方案的人(比如我),我建议安装mpu
。通过安装它pip install mpu --user
并像这样使用它来获取半正矢距离:
import mpu
# Point one
lat1 = 52.2296756
lon1 = 21.0122287
# Point two
lat2 = 52.406374
lon2 = 16.9251681
# What you were looking for
dist = mpu.haversine_distance((lat1, lon1), (lat2, lon2))
print(dist) # gives 278.45817507541943.
另一个可选的包是gpxpy
。
如果你不想要依赖项,你可以使用:
import math
def distance(origin, destination):
"""
Calculate the Haversine distance.
Parameters
----------
origin : tuple of float
(lat, long)
destination : tuple of float
(lat, long)
Returns
-------
distance_in_km : float
Examples
--------
>>> origin = (48.1372, 11.5756) # Munich
>>> destination = (52.5186, 13.4083) # Berlin
>>> round(distance(origin, destination), 1)
504.2
"""
lat1, lon1 = origin
lat2, lon2 = destination
radius = 6371 # km
dlat = math.radians(lat2 - lat1)
dlon = math.radians(lon2 - lon1)
a = (math.sin(dlat / 2) * math.sin(dlat / 2) +
math.cos(math.radians(lat1)) * math.cos(math.radians(lat2)) *
math.sin(dlon / 2) * math.sin(dlon / 2))
c = 2 * math.atan2(math.sqrt(a), math.sqrt(1 - a))
d = radius * c
return d
if __name__ == '__main__':
import doctest
doctest.testmod()
另一个替代包是haversine
:
from haversine import haversine, Unit
lyon = (45.7597, 4.8422) # (latitude, longitude)
paris = (48.8567, 2.3508)
haversine(lyon, paris)
>> 392.2172595594006 # In kilometers
haversine(lyon, paris, unit=Unit.MILES)
>> 243.71201856934454 # In miles
# You can also use the string abbreviation for units:
haversine(lyon, paris, unit='mi')
>> 243.71201856934454 # In miles
haversine(lyon, paris, unit=Unit.NAUTICAL_MILES)
>> 211.78037755311516 # In nautical miles
他们声称对两个向量中所有点之间的距离进行了性能优化:
from haversine import haversine_vector, Unit
lyon = (45.7597, 4.8422) # (latitude, longitude)
paris = (48.8567, 2.3508)
new_york = (40.7033962, -74.2351462)
haversine_vector([lyon, lyon], [paris, new_york], Unit.KILOMETERS)
>> array([ 392.21725956, 6163.43638211])
解决方案 4:
我找到了一个更简单、更强大的解决方案,即使用geodesic
包geopy
,因为无论如何您都很可能会在您的项目中使用它,所以不需要安装额外的包。
以下是我的解决方案:
from geopy.distance import geodesic
origin = (30.172705, 31.526725) # (latitude, longitude) don't confuse
dist = (30.288281, 31.732326)
print(geodesic(origin, dist).meters) # 23576.805481751613
print(geodesic(origin, dist).kilometers) # 23.576805481751613
print(geodesic(origin, dist).miles) # 14.64994773134371
地质学
解决方案 5:
有多种方法可以根据坐标(即纬度和经度)计算距离
安装并导入
from geopy import distance
from math import sin, cos, sqrt, atan2, radians
from sklearn.neighbors import DistanceMetric
import osrm
import numpy as np
定义坐标
lat1, lon1, lat2, lon2, R = 20.9467,72.9520, 21.1702, 72.8311, 6373.0
coordinates_from = [lat1, lon1]
coordinates_to = [lat2, lon2]
使用半正矢
dlon = radians(lon2) - radians(lon1)
dlat = radians(lat2) - radians(lat1)
a = sin(dlat / 2)**2 + cos(radians(lat1)) * cos(radians(lat2)) * sin(dlon / 2)**2
c = 2 * atan2(sqrt(a), sqrt(1 - a))
distance_haversine_formula = R * c
print('distance using haversine formula: ', distance_haversine_formula)
在 sklearn 中使用 haversine
dist = DistanceMetric.get_metric('haversine')
X = [[radians(lat1), radians(lon1)], [radians(lat2), radians(lon2)]]
distance_sklearn = R * dist.pairwise(X)
print('distance using sklearn: ', np.array(distance_sklearn).item(1))
使用 OSRM
osrm_client = osrm.Client(host='http://router.project-osrm.org')
coordinates_osrm = [[lon1, lat1], [lon2, lat2]] # note that order is lon, lat
osrm_response = osrm_client.route(coordinates=coordinates_osrm, overview=osrm.overview.full)
dist_osrm = osrm_response.get('routes')[0].get('distance')/1000 # in km
print('distance using OSRM: ', dist_osrm)
使用 geopy
distance_geopy = distance.distance(coordinates_from, coordinates_to).km
print('distance using geopy: ', distance_geopy)
distance_geopy_great_circle = distance.great_circle(coordinates_from, coordinates_to).km
print('distance using geopy great circle: ', distance_geopy_great_circle)
输出
distance using haversine formula: 26.07547017310917
distance using sklearn: 27.847882224769783
distance using OSRM: 33.091699999999996
distance using geopy: 27.7528030550408
distance using geopy great circle: 27.839182219511834
解决方案 6:
您可以使用Uber 的 H3函数point_dist()
来计算两个(纬度、经度)点之间的球面距离。我们可以设置返回单位(“km”、“m”或“rads”)。默认单位为 km。
例子:
import h3
coords_1 = (52.2296756, 21.0122287)
coords_2 = (52.406374, 16.9251681)
distance = h3.point_dist(coords_1, coords_2, unit='m') # To get distance in meters
解决方案 7:
import numpy as np
def Haversine(lat1,lon1,lat2,lon2, **kwarg):
"""
This uses the ‘haversine’ formula to calculate the great-circle distance between two points – that is,
the shortest distance over the earth’s surface – giving an ‘as-the-crow-flies’ distance between the points
(ignoring any hills they fly over, of course!).
Haversine
formula: a = sin²(Δφ/2) + cos φ1 ⋅ cos φ2 ⋅ sin²(Δλ/2)
c = 2 ⋅ atan2( √a, √(1−a) )
d = R ⋅ c
where φ is latitude, λ is longitude, R is earth’s radius (mean radius = 6,371km);
note that angles need to be in radians to pass to trig functions!
"""
R = 6371.0088
lat1,lon1,lat2,lon2 = map(np.radians, [lat1,lon1,lat2,lon2])
dlat = lat2 - lat1
dlon = lon2 - lon1
a = np.sin(dlat/2)**2 + np.cos(lat1) * np.cos(lat2) * np.sin(dlon/2) **2
c = 2 * np.arctan2(a**0.5, (1-a)**0.5)
d = R * c
return round(d,4)
解决方案 8:
在 2022 年,人们可以使用更新的 Python 库(即)发布解决此问题的混合 JavaScript 和 Python 代码geographiclib
。总体好处是用户可以在现代设备上运行的网页上运行并查看结果。
async function main(){
let pyodide = await loadPyodide();
await pyodide.loadPackage(["micropip"]);
console.log(pyodide.runPythonAsync(`
import micropip
await micropip.install('geographiclib')
from geographiclib.geodesic import Geodesic
lat1 = 52.2296756;
lon1 = 21.0122287;
lat2 = 52.406374;
lon2 = 16.9251681;
ans = Geodesic.WGS84.Inverse(lat1, lon1, lat2, lon2)
dkm = ans["s12"] / 1000
print("Geodesic solution", ans)
print(f"Distance = {dkm:.4f} km.")
`));
}
main();
<script src="https://cdn.jsdelivr.net/pyodide/v0.21.0/full/pyodide.js"></script>
运行代码片段Hide results展开片段
解决方案 9:
(2022 年,实时 JavaScript 版本。)以下是使用较新的 JavaScript 库解决此问题的代码。总体好处是用户可以在现代设备上运行的网页上运行并查看结果。
// Using the WGS84 ellipsoid model for computation
var geod84 = geodesic.Geodesic.WGS84;
// Input data
lat1 = 52.2296756;
lon1 = 21.0122287;
lat2 = 52.406374;
lon2 = 16.9251681;
// Do the classic `geodetic inversion` computation
geod84inv = geod84.Inverse(lat1, lon1, lat2, lon2);
// Present the solution (only the geodetic distance)
console.log("The distance is " + (geod84inv.s12/1000).toFixed(5) + " km.");
<script type="text/javascript" src="https://cdn.jsdelivr.net/npm/geographiclib-geodesic@2.0.0/geographiclib-geodesic.min.js">
</script>
运行代码片段Hide results展开片段
解决方案 10:
由于我们处于地理区域(!),因此这里有一个使用cartopy.geodesic.Geodesic.inverse()的解决方案。我相信您也可以使用pyproj.Geod.inv()来实现类似的效果。
注意:与此处提到的大多数其他包相反,cartopy 使用经纬度对。
import cartopy.geodesic as cgeo
coords_1 = (52.2296756, 21.0122287)
coords_2 = (52.406374, 16.9251681)
coords_3 = (52.406374, 10)
globe = cgeo.Geodesic()
# Distance between two points
inv = globe.inverse(coords_1[::-1], coords_2[::-1])
print(inv.T[0]/1000)
# [279.3529016]
# Distances from one point to a list of other points
inv_2 = globe.inverse(
coords_1[::-1],
[coords_2[::-1], coords_3[::-1]],
)
print(inv_2.T[0]/1000)
# [279.3529016 750.45799898]
解决方案 11:
最简单的方法是使用haversine包。
import haversine as hs
coord_1 = (lat, lon)
coord_2 = (lat, lon)
x = hs.haversine(coord_1, coord_2)
print(f'The distance is {x} km')
解决方案 12:
另一个有趣的用法是通过Pyodide和WebAssembly实现混合使用 JavaScript 和 Python,使用 Python 的库Pandas和geographiclib来获得解决方案也是可行的。
我花了额外的精力使用 Pandas 来准备输入数据,并在输出可用时将它们附加到solution
列中。Pandas 为常见需求提供了许多有用的输入/输出功能。它的方法toHtml
很方便在网页上呈现最终解决方案。
我发现此答案中的代码在某些iPhone和iPad设备上无法成功执行。但在较新的中端 Android 设备上它可以正常运行。
async function main(){
let pyodide = await loadPyodide();
await pyodide.loadPackage(["pandas", "micropip"]);
console.log(pyodide.runPythonAsync(`
import micropip
import pandas as pd
import js
print("Pandas version: " + pd.__version__)
await micropip.install('geographiclib')
from geographiclib.geodesic import Geodesic
import geographiclib as gl
print("Geographiclib version: " + gl.__version__)
data = {'Description': ['Answer to the question', 'Bangkok to Tokyo'],
'From_long': [21.0122287, 100.6],
'From_lat': [52.2296756, 13.8],
'To_long': [16.9251681, 139.76],
'To_lat': [52.406374, 35.69],
'Distance_km': [0, 0]}
df1 = pd.DataFrame(data)
collist = ['Description','From_long','From_lat','To_long','To_lat']
div2 = js.document.createElement("div")
div2content = df1.to_html(buf=None, columns=collist, col_space=None, header=True, index=True)
div2.innerHTML = div2content
js.document.body.append(div2)
arr="<i>by Swatchai</i>"
def dkm(frLat,frLon,toLat,toLon):
print("frLon,frLat,toLon,toLat:", frLon, "|", frLat, "|", toLon, "|", toLat)
dist = Geodesic.WGS84.Inverse(frLat, frLon, toLat, toLon)
return dist["s12"] / 1000
collist = ['Description','From_long','From_lat','To_long','To_lat','Distance_km']
dist = []
for ea in zip(df1['From_lat'].values, df1['From_long'].values, df1['To_lat'].values, df1['To_long'].values):
ans = dkm(*ea)
print("ans=", ans)
dist.append(ans)
df1['Distance_km'] = dist
# Update content
div2content = df1.to_html(buf=None, columns=collist, col_space=None, header=True, index=False)
div2.innerHTML = div2content
js.document.body.append(div2)
# Using the haversine formula
from math import sin, cos, sqrt, atan2, radians, asin
# Approximate radius of earth in km from Wikipedia
R = 6371
lat1 = radians(52.2296756)
lon1 = radians(21.0122287)
lat2 = radians(52.406374)
lon2 = radians(16.9251681)
# https://en.wikipedia.org/wiki/Haversine_formula
def hav(angrad):
return (1-cos(angrad))/2
h = hav(lat2-lat1)+cos(lat2)*cos(lat1)*hav(lon2-lon1)
dist2 = 2*R*asin(sqrt(h))
print(f"Distance by haversine formula = {dist2:8.6f} km.")
`));
}
main();
<script src="https://cdn.jsdelivr.net/pyodide/v0.21.0/full/pyodide.js"></script>
Pyodide implementation<br>
运行代码片段Hide results展开片段
解决方案 13:
这是我使用的东西,感谢Sviatoslav Oleksiv。
earth_radius = {"km": 6371.0087714, "mile": 3959}
earth_radius['km'] *
acos(cos((math.radians(p1['latitude']))) *
cos(math.radians(p2['latitude'])) *
cos(math.radians(p2['longitude']) -
math.radians(p1['longitude'])) +
sin(math.radians(p1['latitude'])) *
sin(math.radians(p2['latitude'])))